Orbitofrontal neurons acquire responses to 'valueless' Pavlovian cues during unblocking
Abstract
The orbitofrontal cortex (OFC) has been described as signaling outcome expectancies or value. Evidence for the latter comes from the studies showing that neural signals in the OFC correlate with value across features. Yet features can co-vary with value, and individual units may participate in multiple ensembles coding different features. Here we used unblocking to test whether OFC neurons would respond to a predictive cue signaling a 'valueless' change in outcome flavor. Neurons were recorded as the rats learned about cues that signaled either an increase in reward number or a valueless change in flavor. We found that OFC neurons acquired responses to both predictive cues. This activity exceeded that exhibited to a 'blocked' cue and was correlated with activity to the actual outcome. These results show that OFC neurons fire to cues with no value independent of what can be inferred through features of the predicted outcome.
Article and author information
Author details
Ethics
Animal experimentation: Rats were tested at the University of Maryland School of Medicine and the NIDA-IRP in accordance with SOM and NIH guidelines (12-CNRB-108).
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 2,035
- views
-
- 199
- downloads
-
- 55
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.