Orbitofrontal neurons acquire responses to 'valueless' Pavlovian cues during unblocking

  1. Michael A McDannald
  2. Guillem R Esber
  3. Meredyth A Wegener
  4. Heather M Wied
  5. Tzu-Lan Liu
  6. Thomas A Stalnaker
  7. Joshua L Jones
  8. Jason Trageser
  9. Geoffrey Schoenbaum  Is a corresponding author
  1. National Institute on Drug Abuse, United States
  2. University of Pittsburg, United States
  3. University of Maryland School of Medicine, United States
  4. National Taiwan University, Taiwan
  5. Johns Hopkins University, United States

Abstract

The orbitofrontal cortex (OFC) has been described as signaling outcome expectancies or value. Evidence for the latter comes from the studies showing that neural signals in the OFC correlate with value across features. Yet features can co-vary with value, and individual units may participate in multiple ensembles coding different features. Here we used unblocking to test whether OFC neurons would respond to a predictive cue signaling a 'valueless' change in outcome flavor. Neurons were recorded as the rats learned about cues that signaled either an increase in reward number or a valueless change in flavor. We found that OFC neurons acquired responses to both predictive cues. This activity exceeded that exhibited to a 'blocked' cue and was correlated with activity to the actual outcome. These results show that OFC neurons fire to cues with no value independent of what can be inferred through features of the predicted outcome.

Article and author information

Author details

  1. Michael A McDannald

    National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillem R Esber

    National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meredyth A Wegener

    University of Pittsburg, Pittsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heather M Wied

    University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tzu-Lan Liu

    National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas A Stalnaker

    National Institute on Drug Abuse, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua L Jones

    University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jason Trageser

    Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Geoffrey Schoenbaum

    National Institute on Drug Abuse, Baltimore, United States
    For correspondence
    gscho002@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Rats were tested at the University of Maryland School of Medicine and the NIDA-IRP in accordance with SOM and NIH guidelines (12-CNRB-108).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,038
    views
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.02653

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.