Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer

  1. Sakari Vanharanta
  2. Christina B Marney
  3. Weiping Shu
  4. Manuel Valiente
  5. Yilong Zou
  6. Aldo Mele
  7. Robert B Darnell
  8. Joan Massagué  Is a corresponding author
  1. Memorial Sloan-Kettering Cancer Center, United States
  2. The Rockefeller University, United States

Abstract

The mechanisms through which cancer cells lock in altered transcriptional programs in support of metastasis remain largely unknown. Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we identified RNA binding motif protein 47 (RBM47) as a suppressor of breast cancer progression and metastasis. RBM47 inhibited breast cancer re-initiation and growth in experimental models. Transcriptome-wide HITS-CLIP analysis revealed widespread RBM47 binding to mRNAs, most prominently in introns and 3'UTRs. RBM47 altered splicing and abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1, inhibit tumor progression downstream of RBM47. Our work identifies RBM47 as an RNA-binding protein that can suppress breast cancer progression and demonstrates how the inactivation of a broadly targeted RNA chaperone enables selection of a pro-metastatic state.

Article and author information

Author details

  1. Sakari Vanharanta

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  2. Christina B Marney

    The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. Weiping Shu

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  4. Manuel Valiente

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  5. Yilong Zou

    Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Aldo Mele

    The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Robert B Darnell

    The Rockefeller University, New York, United States
    Competing interests
    Robert B Darnell, Reviewing editor, eLife.
  8. Joan Massagué

    Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    j-massague@ski.mskcc.org
    Competing interests
    Joan Massagué, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#99-09-032) of Memorial Sloan Kettering Cancer Center. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2014, Vanharanta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,465
    views
  • 674
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sakari Vanharanta
  2. Christina B Marney
  3. Weiping Shu
  4. Manuel Valiente
  5. Yilong Zou
  6. Aldo Mele
  7. Robert B Darnell
  8. Joan Massagué
(2014)
Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer
eLife 3:e02734.
https://doi.org/10.7554/eLife.02734

Share this article

https://doi.org/10.7554/eLife.02734

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.