Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway

  1. Barak Blum
  2. Adam N Roose
  3. Ornella Barrandon
  4. René Maehr
  5. Anthony C Arvanites
  6. Lance S Davidow
  7. Jeffrey C Davis
  8. Quinn P Peterson
  9. Lee L Rubin
  10. Douglas A Melton  Is a corresponding author
  1. Harvard Stem Cell Institute, Harvard University, United States
  2. University of Massachusetts Medical School, United States

Abstract

Dysfunction or death of pancreatic β cells underlies both types of diabetes. This functional decline begins with β cell stress and de-differentiation. Current drugs for T2D lower blood glucose levels, but they do not directly alleviate β cell stress nor prevent, let alone reverse, β cell de-differentiation. We show here that Urocortin 3 (Ucn3), a marker for mature β cells, is down-regulated in the early stages of T2D in mice and when β cells are stressed in vitro. Using an insulin expression-coupled lineage tracer, with Ucn3 as a reporter for the mature β cell state, we screen for factors that reverse β cell de-differentiation. We find that a small molecule inhibitor of TGFβ receptor I (Alk5) protects cells from the loss of key β cell transcription factors and restores a mature β cell identity even after exposure to prolonged and severe diabetes.

Article and author information

Author details

  1. Barak Blum

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam N Roose

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ornella Barrandon

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. René Maehr

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony C Arvanites

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lance S Davidow

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeffrey C Davis

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Quinn P Peterson

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lee L Rubin

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Douglas A Melton

    Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    For correspondence
    dmelton@harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Hideyuki Okano, Keio University School of Medicine, Japan

Ethics

Animal experimentation: Animal experiments were performed in compliance with the Harvard University International Animal Care and Use Committee (IACUC) guidelines (protocol #93-15).

Human subjects: Institutional review board approval for research use of human tissue was obtained from the Harvard University Faculty of Arts and Sciences. Human islets were obtained from NDRI (The National Disease Research Interchange). Donor anonymity was preserved, and the human tissue was collected under applicable regulations and guidelines regarding consent, protection of human subjects and donor confidentiality

Version history

  1. Received: March 16, 2014
  2. Accepted: September 15, 2014
  3. Accepted Manuscript published: September 16, 2014 (version 1)
  4. Version of Record published: October 22, 2014 (version 2)

Copyright

© 2014, Blum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,945
    views
  • 905
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barak Blum
  2. Adam N Roose
  3. Ornella Barrandon
  4. René Maehr
  5. Anthony C Arvanites
  6. Lance S Davidow
  7. Jeffrey C Davis
  8. Quinn P Peterson
  9. Lee L Rubin
  10. Douglas A Melton
(2014)
Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway
eLife 3:e02809.
https://doi.org/10.7554/eLife.02809

Share this article

https://doi.org/10.7554/eLife.02809

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.