A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection

  1. Don B Gammon
  2. Sophie Duraffour
  3. Daniel K Rozelle
  4. Heidi Hehnly
  5. Rita Sharma
  6. Michael E Sparks
  7. Cara C West
  8. Ying Chen
  9. James J Moresco
  10. Graciela Andrei
  11. John C Connor
  12. Darryl Conte
  13. Dawn E Gundersen-Rindal
  14. William L Marshall
  15. John Yates
  16. Neal Silverman
  17. Craig C Mello  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. KU Leuven, Belgium
  3. Boston University, United States
  4. Walter Reed Army Institute of Research, United States
  5. The Scripps Research Institute, United States
  6. United States Department of Agriculture, United States
  7. Merck, United States

Abstract

Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly-conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.

Article and author information

Author details

  1. Don B Gammon

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Duraffour

    KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel K Rozelle

    Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heidi Hehnly

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rita Sharma

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael E Sparks

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cara C West

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ying Chen

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. James J Moresco

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Graciela Andrei

    KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  11. John C Connor

    Boston University, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Darryl Conte

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dawn E Gundersen-Rindal

    United States Department of Agriculture, Beltsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William L Marshall

    Merck, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. John Yates

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Neal Silverman

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Craig C Mello

    University of Massachusetts Medical School, Worcester, United States
    For correspondence
    craig.mello@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal work was approved by the Katholieke Universiteit Leuven Ethics Committee for Animal Care and Use (Permit number: P044-2010) and all animal guidelines and policies were in accordance with the Belgian Royal Decree of 14 November 1993 and the European Directive 86-609-EEC.When necessary, animals were euthanized by administering pentobarbital sodium.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,906
    views
  • 341
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Don B Gammon
  2. Sophie Duraffour
  3. Daniel K Rozelle
  4. Heidi Hehnly
  5. Rita Sharma
  6. Michael E Sparks
  7. Cara C West
  8. Ying Chen
  9. James J Moresco
  10. Graciela Andrei
  11. John C Connor
  12. Darryl Conte
  13. Dawn E Gundersen-Rindal
  14. William L Marshall
  15. John Yates
  16. Neal Silverman
  17. Craig C Mello
(2014)
A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection
eLife 3:e02910.
https://doi.org/10.7554/eLife.02910

Share this article

https://doi.org/10.7554/eLife.02910

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Immunology and Inflammation
    Mohsen Khosravi-Maharlooei, Andrea Vecchione ... Megan Sykes
    Research Article

    Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.