1. Cell Biology
Download icon

Potassium dependent rescue of a myopathy with core-like structures in mouse

  1. M Gartz Hanson
  2. Jonathan J Wilde
  3. Rosa L Moreno
  4. Angela D Minic
  5. Lee Niswander  Is a corresponding author
  1. University of Colorado, Anschutz Medical Campus, United States
Research Article
  • Cited 6
  • Views 1,357
  • Annotations
Cite this article as: eLife 2015;4:e02923 doi: 10.7554/eLife.02923

Abstract

Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. Here we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.

Article and author information

Author details

  1. M Gartz Hanson

    Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan J Wilde

    Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rosa L Moreno

    Department of Physiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela D Minic

    Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lee Niswander

    Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
    For correspondence
    Lee.Niswander@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiments were conducted in accordance with the protocols described in the Guide for the Care and Use of Laboratory Animals (NIH. Revised 2011). All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (B-69913(10)1D) of the University of Colorado Denver.

Human subjects: Ethical approval was obtained through University of Colorado COMIRB approval for human subject research (protocol number 12-1504). All samples were provided through an exempt IRB which stated that we were disallowed patient information that could be used as an identifier.

Reviewing Editor

  1. Giulio Cossu, University of Manchester, United Kingdom

Publication history

  1. Received: March 27, 2014
  2. Accepted: January 7, 2015
  3. Accepted Manuscript published: January 7, 2015 (version 1)
  4. Version of Record published: January 29, 2015 (version 2)
  5. Version of Record updated: March 9, 2017 (version 3)

Copyright

© 2015, Hanson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,357
    Page views
  • 150
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haibin Yang et al.
    Research Article Updated

    Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Qiuying Liu et al.
    Research Article Updated

    The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.