C. elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors

  1. Brigitte LeBoeuf
  2. Paola Correa
  3. Changhoon Jee
  4. L. René García  Is a corresponding author
  1. Howard Hughes Medical Institute, Texas A&M University, United States
  2. Texas A&M University, United States

Abstract

The circuit structure and function underlying post-coital male behaviors remain poorly understood. Using mutant analysis, laser ablation, optogenetics and Ca2+ imaging, we observed that following C. elegans male copulation, the duration of post-coital lethargy is coupled to cellular events involved in ejaculation. We show that the SPV and SPD spicule-associated sensory neurons and the spicule socket neuronal support cells function with intromission circuit components, including the cholinergic SPC and PCB and the glutamatergic PCA sensory-motor neurons, to coordinate sex muscle contractions with initiation and continuation of sperm movement. Our observations suggest that the SPV and SPD and their associated dopamine-containing socket cells sense the intrauterine environment through cellular endings exposed at the spicule tips and regulate both sperm release into the hermaphrodite and the recovery from post-coital lethargy.

Article and author information

Author details

  1. Brigitte LeBoeuf

    Howard Hughes Medical Institute, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Paola Correa

    Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Changhoon Jee

    Howard Hughes Medical Institute, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. L. René García

    Howard Hughes Medical Institute, Texas A&M University, Texas, United States
    For correspondence
    rgarcia@bio.tamu.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, LeBoeuf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,657
    views
  • 233
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brigitte LeBoeuf
  2. Paola Correa
  3. Changhoon Jee
  4. L. René García
(2014)
C. elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors
eLife 3:e02938.
https://doi.org/10.7554/eLife.02938

Share this article

https://doi.org/10.7554/eLife.02938

Further reading

    1. Neuroscience
    David Richter, Dirk van Moorselaar, Jan Theeuwes
    Research Article

    Avoiding distraction by salient yet irrelevant stimuli is critical when accomplishing daily tasks. One possible mechanism to accomplish this is by suppressing stimuli that may be distracting such that they no longer compete for attention. While the behavioral benefits of distractor suppression are well established, its neural underpinnings are not yet fully understood. In a functional MRI (fMRI) study, we examined whether and how sensory responses in early visual areas show signs of distractor suppression after incidental learning of spatial statistical regularities. Participants were exposed to an additional singleton task where, unbeknownst to them, one location more frequently contained a salient distractor. We analyzed whether visual responses in terms of fMRI BOLD were modulated by this distractor predictability. Our findings indicate that implicit spatial priors shape sensory processing even at the earliest stages of cortical visual processing, evident in early visual cortex as a suppression of stimuli at locations which frequently contained distracting information. Notably, while this suppression was spatially (receptive field) specific, it did extend to nearby neutral locations and occurred regardless of whether distractors, nontarget items, or targets were presented at this location, suggesting that suppression arises before stimulus identification. Crucially, we observed similar spatially specific neural suppression even if search was only anticipated, but no search display was presented. Our results highlight proactive modulations in early visual cortex, where potential distractions are suppressed preemptively, before stimulus onset, based on learned expectations. Combined, our study underscores how the brain leverages implicitly learned prior knowledge to optimize sensory processing and attention allocation.

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.