Active invasion of bacteria into living fungal cells

  1. Nadine Moebius
  2. Zerrin Üzüm
  3. Jan Dijksterhuis
  4. Gerald Lackner
  5. Christian Hertweck  Is a corresponding author
  1. Leibniz Institute for Natural Product Research and Infection Biology, Germany
  2. Applied and Industrial Mycology, CBS, Netherlands

Abstract

The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade into the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.

Article and author information

Author details

  1. Nadine Moebius

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Zerrin Üzüm

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan Dijksterhuis

    Applied and Industrial Mycology, CBS, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Gerald Lackner

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Hertweck

    Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
    For correspondence
    christian.hertweck@hki-jena.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Moebius et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,075
    views
  • 860
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadine Moebius
  2. Zerrin Üzüm
  3. Jan Dijksterhuis
  4. Gerald Lackner
  5. Christian Hertweck
(2014)
Active invasion of bacteria into living fungal cells
eLife 3:e03007.
https://doi.org/10.7554/eLife.03007

Share this article

https://doi.org/10.7554/eLife.03007

Further reading

  1. Bacteria and fungal cells join forces to cause rice seedling blight.

    1. Microbiology and Infectious Disease
    Lesia Semenova, Yingfan Wang ... Edward P Browne
    Research Article

    Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning (ML) approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host–reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A leave-one-covariate-out inference approach identified specific HIV reservoir and clinical–demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical–demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, ML algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA . The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.