A tethered delivery mechanism explains the catalytic action of a microtubule polymerase

  1. Pelin Ayaz
  2. Sarah Munyoki
  3. Elisabeth A Geyer
  4. Felipe-Andrés Piedra
  5. Emily S Vu
  6. Raquel Bromberg
  7. Zbyszek Otwinowski
  8. Nick V Grishin
  9. Chad A Brautigam
  10. Luke M Rice  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. Howard Hughes Medical Institute, UT Southwestern Medical Center, United States
8 figures and 1 table

Figures

TOG2 binds to curved αβ-tubulin analogously to TOG1.

(A) Structure of the TOG2:αβ-tubulin complex (TOG2: slate, α-tubulin: pink, β-tubulin: green), with the important binding residues W341 and R519 represented as spheres. The semi-transparent gray …

https://doi.org/10.7554/eLife.03069.003
TOG1 and TOG2 bind αβ-tubulin with comparable affinity.

(A) Sedimentation velocity analytical ultracentrifugation of polymerization competent yeast αβ-tubulin does not show signs of self-association between 80 nM and 1 μM concentration. The main plot …

https://doi.org/10.7554/eLife.03069.005
In TOG1-TOG2, the two TOG domains bind two αβ-tubulins without positive cooperativity.

(A) Cartoons illustrating three different possible arrangements of a TOG1-TOG2:(αβ)2 complex: independent (left) denotes that an αβ-tubulin:αβ-tubulin interface does not provide additional stability …

https://doi.org/10.7554/eLife.03069.006
Two TOG domains are required for Stu2 function, but they do not have to be different.

(A) Yeast carrying plasmid-based rescue constructs coding for dimerization-competent variants of Stu2p were plated at serial dilutions on media that was unmodified (control) or that contained 500 μM …

https://doi.org/10.7554/eLife.03069.007
Stu2p function tolerates variation in the primary sequence and in the length of the TOG1-TOG2 linker.

Rescue assays were performed as in Figure 4, using dimerization-impaired rescue constructs. (A) Stu2p variants with ‘shuffled’ (randomized) linker sequences rescue the depletion of endogenous Stu2p …

https://doi.org/10.7554/eLife.03069.008
A tethering model for the polymerase function that incorporates our structural and biochemical observations.

The model posits that MT plus-end recognition occurs through TOG-mediated recognition of curved (black outline, ‘kinked’ αβ-tubulin cartoon), not straight (gray outlines), αβ-tubulin on the MT end, …

https://doi.org/10.7554/eLife.03069.009
Figure 7 with 1 supplement
An implicit model can recapitulate the catalytic nature of polymerase activity.

We developed a kinetic model for microtubule elongation and altered it to explore models for the polymerase. (A) Cartoon of the cylindrical microtubule (left; pink and green spheres represent α- and …

https://doi.org/10.7554/eLife.03069.010
Figure 7—figure supplement 1
An implicit model as in Figure 7 but trained against different measured growth rates.

(A) A grid search identified parameters capable of recapitulating the concentration dependence of microtubule elongation rates measured by Walker et al. (1988). The black line summarizes the trend …

https://doi.org/10.7554/eLife.03069.011
Schematic cartoons illustrating the origin of catalytic action.

The microtubule end has multiple sites where αβ-tubulin can associate, but elongation is largely dominated by additions into the few, high-affinity ‘corner’ sites (left panel) because pure …

https://doi.org/10.7554/eLife.03069.012

Tables

Table 1

Data collection and refinement statistics

https://doi.org/10.7554/eLife.03069.004
Data collection
 Space groupC2
 Cell dimensions
a, b, c (Å)111.91, 89.57, 135.51
β (°)112.31
 Resolution (Å)50.0–2.81 (2.92–2.81)*
Rsym0.143 (0.924)
 <I>/<σI>9.6 (1.1)
 Wilson B-value (Å)48.9
 Anisotropy (Å) relative to best direction (001)
 ΔB in (100) direction, ΔB in (010) direction+29.95, +8.38
 CC1/2 in high resolution shell0.542
 Completeness (%)98.2 (91.3)
 Redundancy4.1 (3.2)
Refinement
 Resolution (Å)2.81
 No. reflections26,235
 Completeness(%)86.5 (35.3)
Rwork/ Rfree (%)21.8/25.9 (33.0/41.3)
 Maximum likelihood estimated coordinate error (Å)0.42
 No. atoms8524
 Protein (non-hydrogen)8437
 Ligand/ion66
 Water21
 B-factors
 Protein44.7
 Ligand/ion52.0
 Water27.3
 Rms deviations
 Bond lengths (Å)0.003
 Bond angles (°)0.66
 Ramanchandran plot
 Favored (%)95.0
 Allowed (%)4.25
 Disallowed (%)0.75
 Rotamer outliers (%)3.2
 Molprobity clash score1.5
  1. *

    Highest resolution shell is shown in parenthesis.

  2. The data were corrected for anisotropy in HKL2000. This treatment eliminated weak reflections and reduced the completeness of the data used for refinement compared to the completeness reported for data collection.

Download links