1. Structural Biology and Molecular Biophysics
  2. Cell Biology
Download icon

A tethered delivery mechanism explains the catalytic action of a microtubule polymerase

Research Article
  • Cited 57
  • Views 2,363
  • Annotations
Cite this article as: eLife 2014;3:e03069 doi: 10.7554/eLife.03069

Abstract

Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to yeast αβ-tubulin. Like TOG1, TOG2 binds selectively to a fully 'curved' conformation of αβ-tubulin, incompatible with a microtubule lattice. We also show that TOG1-TOG2 binds non-cooperatively to two αβ-tubulins. Preferential interactions between TOGs and fully curved αβ-tubulin that cannot exist elsewhere in the microtubule explain how these polymerases localize to the extreme microtubule end. We propose that these polymerases promote elongation because their linked TOG domains concentrate unpolymerized αβ-tubulin near curved subunits already bound at the microtubule end. This tethering model can explain catalyst-like behavior and also predicts that the polymerase action changes the configuration of the microtubule end.

Article and author information

Author details

  1. Pelin Ayaz

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Munyoki

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisabeth A Geyer

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Felipe-Andrés Piedra

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily S Vu

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Raquel Bromberg

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zbyszek Otwinowski

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick V Grishin

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Chad A Brautigam

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Luke M Rice

    UT Southwestern Medical Center, Dallas, United States
    For correspondence
    Luke.Rice@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen C Harrison, Harvard Medical School, United States

Publication history

  1. Received: April 11, 2014
  2. Accepted: August 4, 2014
  3. Accepted Manuscript published: August 5, 2014 (version 1)
  4. Version of Record published: August 29, 2014 (version 2)

Copyright

© 2014, Ayaz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,363
    Page views
  • 313
    Downloads
  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Sunbin Deng et al.
    Research Article Updated

    NatB is one of three major N-terminal acetyltransferase (NAT) complexes (NatA-NatC), which co-translationally acetylate the N-termini of eukaryotic proteins. Its substrates account for about 21% of the human proteome, including well known proteins such as actin, tropomyosin, CDK2, and α-synuclein (αSyn). Human NatB (hNatB) mediated N-terminal acetylation of αSyn has been demonstrated to play key roles in the pathogenesis of Parkinson's disease and as a potential therapeutic target for hepatocellular carcinoma. Here we report the cryo-EM structure of hNatB bound to a CoA-αSyn conjugate, together with structure-guided analysis of mutational effects on catalysis. This analysis reveals functionally important differences with human NatA and Candida albicans NatB, resolves key hNatB protein determinants for αSyn N-terminal acetylation, and identifies important residues for substrate-specific recognition and acetylation by NatB enzymes. These studies have implications for developing small molecule NatB probes and for understanding the mode of substrate selection by NAT enzymes.

    1. Structural Biology and Molecular Biophysics
    Cheng Dong et al.
    Research Article Updated

    The Polycomb repressive complex 2 (PRC2) is a multicomponent histone H3K27 methyltransferase complex, best known for silencing the Hox genes during embryonic development. The Polycomb-like proteins PHF1, MTF2, and PHF19 are critical components of PRC2 by stimulating its catalytic activity in embryonic stem cells. The Tudor domains of PHF1/19 have been previously shown to be readers of H3K36me3 in vitro. However, some other studies suggest that PHF1 and PHF19 co-localize with the H3K27me3 mark but not H3K36me3 in cells. Here, we provide further evidence that PHF1 co-localizes with H3t in testis and its Tudor domain preferentially binds to H3tK27me3 over canonical H3K27me3 in vitro. Our complex structures of the Tudor domains of PHF1 and PHF19 with H3tK27me3 shed light on the molecular basis for preferential recognition of H3tK27me3 by PHF1 and PHF19 over canonical H3K27me3, implicating that H3tK27me3 might be a physiological ligand of PHF1/19.