Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

  1. Alexandre B Roland
  2. Ana Ricobaraza
  3. Damien Carrel
  4. Benjamin M Jordan
  5. Felix Rico
  6. Anne C Simon
  7. Marie Humbert-Claude
  8. Jeremy Ferrier
  9. Maureen H McFadden
  10. Simon Scheuring
  11. Zsolt Lenkei  Is a corresponding author
  1. ESPCI-ParisTech, France
  2. Université Paris Descartes, Sorbonne Paris Cité, France
  3. Harvard University, United States
  4. Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, France

Abstract

Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R) activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the subventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect brain architecture and wiring.

Article and author information

Author details

  1. Alexandre B Roland

    ESPCI-ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ana Ricobaraza

    ESPCI-ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Damien Carrel

    Université Paris Descartes, Sorbonne Paris Cité, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin M Jordan

    Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Felix Rico

    Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne C Simon

    ESPCI-ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Marie Humbert-Claude

    ESPCI-ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeremy Ferrier

    ESPCI-ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Maureen H McFadden

    ESPCI-ParisTech, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Simon Scheuring

    Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Zsolt Lenkei

    ESPCI-ParisTech, Paris, France
    For correspondence
    zsolt.lenkei@espci.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Franck Polleux, Columbia University, United States

Ethics

Animal experimentation: Experiments were performed in agreement with the institutional guidelines for the use and care of animals and in compliance with national and international laws and policies (Council directives no. 87-848, 19 October 1987, Ministère de l'Agriculture et de la Forêt, Service Vétérinaire de la Santé et de la Protection Animale). All surgery was performed under Ketamine/Xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: April 22, 2014
  2. Accepted: September 9, 2014
  3. Accepted Manuscript published: September 15, 2014 (version 1)
  4. Version of Record published: September 30, 2014 (version 2)

Copyright

© 2014, Roland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,461
    Page views
  • 579
    Downloads
  • 65
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre B Roland
  2. Ana Ricobaraza
  3. Damien Carrel
  4. Benjamin M Jordan
  5. Felix Rico
  6. Anne C Simon
  7. Marie Humbert-Claude
  8. Jeremy Ferrier
  9. Maureen H McFadden
  10. Simon Scheuring
  11. Zsolt Lenkei
(2014)
Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth
eLife 3:e03159.
https://doi.org/10.7554/eLife.03159

Share this article

https://doi.org/10.7554/eLife.03159

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.