Bidirectional helical motility of cytoplasmic dynein around microtubules

  1. Sinan Can
  2. Mark A Dewitt
  3. Ahmet Yildiz  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Cytoplasmic dynein is a molecular motor responsible for minus-end directed motility along microtubules (MTs). Dynein motility has previously been studied on surface-immobilized MTs, which constrains the motors to move in two dimensions. Here, we explored the full trajectory of dynein motility in three dimensions using an MT bridge assay. We found that dynein moves in a helical trajectory around the MT with an average pitch of ~500 nm. Unlike other cytoskeletal motors that produce torque in a specific direction, dynein generates torque in either direction, resulting in bidirectional helical motion. Dynein has a net preference for right-handed rotation, suggesting that the heads tend to bind to the closest tubulin binding site when taking sideways steps. This bidirectional helical motility may allow dynein to avoid roadblocks in dense cytoplasmic environments during cargo transport.

Article and author information

Author details

  1. Sinan Can

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark A Dewitt

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ahmet Yildiz

    University of California, Berkeley, Berkeley, United States
    For correspondence
    yildiz@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Can et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,011
    views
  • 259
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sinan Can
  2. Mark A Dewitt
  3. Ahmet Yildiz
(2014)
Bidirectional helical motility of cytoplasmic dynein around microtubules
eLife 3:e03205.
https://doi.org/10.7554/eLife.03205

Share this article

https://doi.org/10.7554/eLife.03205

Further reading

    1. Structural Biology and Molecular Biophysics
    Andrew D Huber, Taosheng Chen
    Insight

    Complementary structural biology approaches reveal how an agonist and a covalent inhibitor simultaneously bind to a nuclear receptor.

    1. Structural Biology and Molecular Biophysics
    Lirong Zheng, Bingxin Zhou ... Liang Hong
    Short Report

    The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.