DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome

  1. Alessandro Costa  Is a corresponding author
  2. Ludovic Renault
  3. Paolo Swuec
  4. Tatjana Petojevic
  5. Jim Pesavento
  6. Ivar Ilves
  7. Kirsty MacLellan-Gibson
  8. Roland A Fleck
  9. Michael R Botchan
  10. James M Berger
  1. London Research Institute, Cancer Research UK, United Kingdom
  2. University of California, Berkeley, United States
  3. University of California, Berkeley, United Kingdom
  4. University of Tartu, Estonia
  5. National Institute for Biological Standards and Control, United Kingdom
  6. King's College London, United Kingdom
  7. Johns Hopkins University School of Medicine, United States

Abstract

The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. We have determined the electron-microscopy structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3' single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase.

Article and author information

Author details

  1. Alessandro Costa

    London Research Institute, Cancer Research UK, London, United Kingdom
    For correspondence
    alessandro.costa@cancer.org.uk
    Competing interests
    No competing interests declared.
  2. Ludovic Renault

    London Research Institute, Cancer Research UK, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Paolo Swuec

    London Research Institute, Cancer Research UK, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Tatjana Petojevic

    University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Jim Pesavento

    University of California, Berkeley, Berkeley, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ivar Ilves

    University of Tartu, Tartu, Estonia
    Competing interests
    No competing interests declared.
  7. Kirsty MacLellan-Gibson

    National Institute for Biological Standards and Control, Potters Bar, United Kingdom
    Competing interests
    No competing interests declared.
  8. Roland A Fleck

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Michael R Botchan

    University of California, Berkeley, Berkeley, United States
    Competing interests
    Michael R Botchan, Reviewing editor, eLife.
  10. James M Berger

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Stephen C Kowalczykowski, University of California, Davis, United States

Version history

  1. Received: May 7, 2014
  2. Accepted: August 8, 2014
  3. Accepted Manuscript published: August 12, 2014 (version 1)
  4. Version of Record published: September 2, 2014 (version 2)

Copyright

© 2014, Costa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,481
    Page views
  • 559
    Downloads
  • 98
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro Costa
  2. Ludovic Renault
  3. Paolo Swuec
  4. Tatjana Petojevic
  5. Jim Pesavento
  6. Ivar Ilves
  7. Kirsty MacLellan-Gibson
  8. Roland A Fleck
  9. Michael R Botchan
  10. James M Berger
(2014)
DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome
eLife 3:e03273.
https://doi.org/10.7554/eLife.03273

Share this article

https://doi.org/10.7554/eLife.03273

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.