Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step

  1. Alex A Shestov
  2. Xiaojing Liu
  3. Zheng Ser
  4. Ahmad A Cluntun
  5. Yin P Hung
  6. Lei Huang
  7. Dongsung Kim
  8. Anne Le
  9. Gary Yellen
  10. John G Albeck
  11. Jason W Locasale  Is a corresponding author
  1. Cornell University, United States
  2. Harvard Medical School, United States
  3. Johns Hopkins University School of Medicine, United States
  4. University of California, Davis, United States

Abstract

Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together these findings enumerate the biochemical determinants of the WE, and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective.

Article and author information

Author details

  1. Alex A Shestov

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  2. Xiaojing Liu

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  3. Zheng Ser

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  4. Ahmad A Cluntun

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  5. Yin P Hung

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Lei Huang

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  7. Dongsung Kim

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  8. Anne Le

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Gary Yellen

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. John G Albeck

    University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  11. Jason W Locasale

    Cornell University, Ithaca, United States
    For correspondence
    locasale@cornell.edu
    Competing interests
    Jason W Locasale, A patent related to this work has been filed..

Copyright

© 2014, Shestov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,786
    views
  • 1,194
    downloads
  • 221
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex A Shestov
  2. Xiaojing Liu
  3. Zheng Ser
  4. Ahmad A Cluntun
  5. Yin P Hung
  6. Lei Huang
  7. Dongsung Kim
  8. Anne Le
  9. Gary Yellen
  10. John G Albeck
  11. Jason W Locasale
(2014)
Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
eLife 3:e03342.
https://doi.org/10.7554/eLife.03342

Share this article

https://doi.org/10.7554/eLife.03342

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.