Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step

  1. Alex A Shestov
  2. Xiaojing Liu
  3. Zheng Ser
  4. Ahmad A Cluntun
  5. Yin P Hung
  6. Lei Huang
  7. Dongsung Kim
  8. Anne Le
  9. Gary Yellen
  10. John G Albeck
  11. Jason W Locasale  Is a corresponding author
  1. Cornell University, United States
  2. Harvard Medical School, United States
  3. Johns Hopkins University School of Medicine, United States
  4. University of California, Davis, United States

Abstract

Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together these findings enumerate the biochemical determinants of the WE, and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective.

Article and author information

Author details

  1. Alex A Shestov

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  2. Xiaojing Liu

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  3. Zheng Ser

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  4. Ahmad A Cluntun

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  5. Yin P Hung

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Lei Huang

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  7. Dongsung Kim

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  8. Anne Le

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Gary Yellen

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. John G Albeck

    University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  11. Jason W Locasale

    Cornell University, Ithaca, United States
    For correspondence
    locasale@cornell.edu
    Competing interests
    Jason W Locasale, A patent related to this work has been filed..

Copyright

© 2014, Shestov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,730
    views
  • 1,176
    downloads
  • 215
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex A Shestov
  2. Xiaojing Liu
  3. Zheng Ser
  4. Ahmad A Cluntun
  5. Yin P Hung
  6. Lei Huang
  7. Dongsung Kim
  8. Anne Le
  9. Gary Yellen
  10. John G Albeck
  11. Jason W Locasale
(2014)
Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
eLife 3:e03342.
https://doi.org/10.7554/eLife.03342

Share this article

https://doi.org/10.7554/eLife.03342

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.