Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step

  1. Alex A Shestov
  2. Xiaojing Liu
  3. Zheng Ser
  4. Ahmad A Cluntun
  5. Yin P Hung
  6. Lei Huang
  7. Dongsung Kim
  8. Anne Le
  9. Gary Yellen
  10. John G Albeck
  11. Jason W Locasale  Is a corresponding author
  1. Cornell University, United States
  2. Harvard Medical School, United States
  3. Johns Hopkins University School of Medicine, United States
  4. University of California, Davis, United States

Abstract

Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together these findings enumerate the biochemical determinants of the WE, and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective.

Article and author information

Author details

  1. Alex A Shestov

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  2. Xiaojing Liu

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  3. Zheng Ser

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  4. Ahmad A Cluntun

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  5. Yin P Hung

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Lei Huang

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  7. Dongsung Kim

    Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  8. Anne Le

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Gary Yellen

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. John G Albeck

    University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  11. Jason W Locasale

    Cornell University, Ithaca, United States
    For correspondence
    locasale@cornell.edu
    Competing interests
    Jason W Locasale, A patent related to this work has been filed..

Copyright

© 2014, Shestov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,751
    views
  • 1,187
    downloads
  • 215
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex A Shestov
  2. Xiaojing Liu
  3. Zheng Ser
  4. Ahmad A Cluntun
  5. Yin P Hung
  6. Lei Huang
  7. Dongsung Kim
  8. Anne Le
  9. Gary Yellen
  10. John G Albeck
  11. Jason W Locasale
(2014)
Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
eLife 3:e03342.
https://doi.org/10.7554/eLife.03342

Share this article

https://doi.org/10.7554/eLife.03342

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.