Rhythmogenic Networks: The ins and outs of breathing

  1. Jan-Marino Ramirez  Is a corresponding author
  2. Tatiana M Anderson
  3. Alfredo J Garcia III
  1. Seattle Children's Hospital, United States
  2. Seattle Children's Research Institute, United States

From our first breath to our last we continuously maintain and adjust our breathing to meet our metabolic, behavioural and environmental needs. For example, we breathe faster when we are anxious or while we are working out; we gasp when we run out of air, and we sigh when we are relieved. Yet, despite all of its complexity, breathing is controlled by a very small network of neurons within the brainstem (Richter and Smith, 2014).

Our breathing follows a rhythm that can have up to three phases. The first phase, which is called ‘inspiration’, begins when we breathe in: our diaphragm and some of the muscles between our ribs contract to increase the volume of our chest, which causes air to enter our lungs. During the second phase, which is called ‘post-inspiration’, we begin to exhale by relaxing the diaphragm and rib muscles, which causes air to slowly leave the lungs. Post-inspiration is particularly important for generating speech. During the third phase, which is called ‘active expiration’, other muscles contract to actively push air out of the lungs. Active expiration is important during exercise, but is not necessary under resting conditions.

Within the brainstem, neurons working in a network called the preBötzinger complex generate the basis of our breathing rhythm (Gray et al., 2010). These neurons, which are identified as Dbx1 neurons, continue to generate rhythmic nerve impulses, even when they are isolated from the rest of the brain. These nerve impulses normally travel through the brain stem, to cranial nerves, and down the spinal cord (via motor neurons) to the diaphragm and rib muscles. However, this network is primarily active in the inspiration phase (Carroll et al., 2013), so there is considerable interest in efforts to identify and understand the neurons and areas of the brain that are responsible for generating all three phases of the breathing cycle. Now, in eLife, Paul Gray and co-workers at the Washington University School of Medicine, Baylor College of Medicine and the College of William and Mary have used elegant genetic approaches to provide new insights into the generation of the breathing rhythm and its different phases.

Gray and colleagues—including Srinivasan Tupal as first author—have built on recent research on mice that identified a second rhythm-generating region in the brainstem. This rhythmogenic region is formed from two overlapping groups of neurons: the retrotrapezoid nucleus (RTN for short) and the parafacial respiratory group (pFRG; Pagliardini et al., 2011). Deleting a gene to block the development of neurons called the Atoh1 neurons in the RTN/pFRG region caused mice to die shortly after birth because they were unable to establish a normal respiratory pattern (Rose et al., 2009). However, this discovery did not identify whether these neurons are directly involved in the generation of active expiration or through another role.

Now, by simultaneously measuring different respiratory motor neurons, Tupal et al. demonstrated that elimination of Atoh1 neurons throughout the ventral respiratory column (a larger region within the brainstem which includes the RTN/pFRG) causes the inspiratory and active expiratory phases of the breathing rhythm to become out of sync with one another (Tupal et al., 2014). However, there was still rhythmic breathing activity. And thus, unlike the loss of the Dbx1 neurons in the preBötzinger complex, losing the Atoh1 neurons in the RTN/pFRG region did not cause the breathing rhythm to be lost.

Tupal et al. conclude that two distinct populations of neurons are responsible for two different functions: some are responsible for generating the different rhythms of breathing, whilst others ensure that these different rhythms remain coordinated. Identifying which genes help to make these neurons, and the roles that these neurons play, may help us to understand medical conditions where breathing rhythms become uncoordinated, such as obstructive sleep apnea (Ramirez et al., 2013). However, the current model still leaves some questions unanswered. For example, how do neurons interacting in the brainstem give rise to the post-inspiration phase of breathing?

The findings by Tupal et al. also offer the thought-provoking possibility that there exists a third rhythmogenic region that generates the rhythm behind post-inspiratory activity. In addition to the preBötzinger complex and RTN/pFRG region, Dbx1 and Atoh1 neurons are also found throughout the ventral respiratory column (Gray, 2013). Thus, one may hypothesize that additional unidentified rhythmogenic networks of neurons may be present in this larger region and that these networks could generate the rhythm of post-inspiration.

If so, and much like what happens for active expiration, these networks would also need to be coordinated with the other networks that control the rhythms of the other phases of breathing. However, the neurons that might coordinate these rhythms are also currently unknown.

Tupal et al. propose that rhythmogenic networks could be organized in segments throughout the ventral respiratory column. This idea has been proposed for the spinal cord (Grillner, 2011) and is supported by experimental evidence (Wiggin et al., 2012). However the suggestion that a similar system in the brainstem exists in the brainstem remains to be validated.

While many questions remain unanswered, the work of Tupal et al. has expanded what we know about the neuronal activity and rhythms that control our breathing—a process that is vital to all of our lives.

References

    1. Grillner S
    (2011)
    Comprehensive Physiology
    1179–1236, Comprehensive Physiology, 10.1002/cphy.cp010226.

Article and author information

Author details

  1. Jan-Marino Ramirez

    Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, United States
    For correspondence
    nino1@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Tatiana M Anderson

    Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alfredo J Garcia III

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published:

Copyright

© 2014, Ramirez et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,294
    views
  • 49
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan-Marino Ramirez
  2. Tatiana M Anderson
  3. Alfredo J Garcia III
(2014)
Rhythmogenic Networks: The ins and outs of breathing
eLife 3:e03375.
https://doi.org/10.7554/eLife.03375

Further reading

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.