Laser ablation of Dbx1 neurons in the pre-Bötzinger Complex stops inspiratory rhythm and impairs output in neonatal mice

  1. Xueying Wang
  2. John A Hayes
  3. Ann L Revill
  4. Hanbing Song
  5. Andrew Kottick
  6. Nikolas C Vann
  7. M Drew LaMar
  8. Maria CD Picardo
  9. Victoria T Akins
  10. Gregory D Funk
  11. Christopher A Del Negro  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. The College of William and Mary, United States
  3. University of Alberta, Canada

Abstract

To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ~15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.

Article and author information

Author details

  1. Xueying Wang

    Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John A Hayes

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann L Revill

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanbing Song

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Kottick

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikolas C Vann

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Drew LaMar

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria CD Picardo

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria T Akins

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Gregory D Funk

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher A Del Negro

    The College of William and Mary, Williamsburg, United States
    For correspondence
    cadeln@wm.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee (IACUC) at The College of William & Mary, which ensures compliance with United States federal regulations concerning care and use of vertebrate animals in research, approved the following protocols (IACUC-2013-07-10-8828-cadeln). The anesthesia and surgery protocols are consistent with the 2011 guidelines of the Animal Research Advisory Committee, which is part of the Office of Animal Care and Use of the National Institutes of Health of the USA.

Copyright

© 2014, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,579
    views
  • 938
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xueying Wang
  2. John A Hayes
  3. Ann L Revill
  4. Hanbing Song
  5. Andrew Kottick
  6. Nikolas C Vann
  7. M Drew LaMar
  8. Maria CD Picardo
  9. Victoria T Akins
  10. Gregory D Funk
  11. Christopher A Del Negro
(2014)
Laser ablation of Dbx1 neurons in the pre-Bötzinger Complex stops inspiratory rhythm and impairs output in neonatal mice
eLife 3:e03427.
https://doi.org/10.7554/eLife.03427

Share this article

https://doi.org/10.7554/eLife.03427

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.