1. Neuroscience
Download icon

Laser ablation of Dbx1 neurons in the pre-Bötzinger Complex stops inspiratory rhythm and impairs output in neonatal mice

  1. Xueying Wang
  2. John A Hayes
  3. Ann L Revill
  4. Hanbing Song
  5. Andrew Kottick
  6. Nikolas C Vann
  7. M Drew LaMar
  8. Maria CD Picardo
  9. Victoria T Akins
  10. Gregory D Funk
  11. Christopher A Del Negro  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. The College of William and Mary, United States
  3. University of Alberta, Canada
Research Article
  • Cited 55
  • Views 2,362
  • Annotations
Cite this article as: eLife 2014;3:e03427 doi: 10.7554/eLife.03427

Abstract

To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ~15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.

Article and author information

Author details

  1. Xueying Wang

    Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John A Hayes

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann L Revill

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanbing Song

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Kottick

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikolas C Vann

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Drew LaMar

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria CD Picardo

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria T Akins

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Gregory D Funk

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher A Del Negro

    The College of William and Mary, Williamsburg, United States
    For correspondence
    cadeln@wm.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee (IACUC) at The College of William & Mary, which ensures compliance with United States federal regulations concerning care and use of vertebrate animals in research, approved the following protocols (IACUC-2013-07-10-8828-cadeln). The anesthesia and surgery protocols are consistent with the 2011 guidelines of the Animal Research Advisory Committee, which is part of the Office of Animal Care and Use of the National Institutes of Health of the USA.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: May 21, 2014
  2. Accepted: July 12, 2014
  3. Accepted Manuscript published: July 15, 2014 (version 1)
  4. Version of Record published: August 12, 2014 (version 2)

Copyright

© 2014, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,362
    Page views
  • 907
    Downloads
  • 55
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Aaron D Milstein et al.
    Research Article Updated

    Learning requires neural adaptations thought to be mediated by activity-dependent synaptic plasticity. A relatively non-standard form of synaptic plasticity driven by dendritic calcium spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippocampal CA1 neurons. Here, we found that this behavioral timescale synaptic plasticity (BTSP) can also reshape existing place fields via bidirectional synaptic weight changes that depend on the temporal proximity of plateau potentials to pre-existing place fields. When evoked near an existing place field, plateau potentials induced less synaptic potentiation and more depression, suggesting BTSP might depend inversely on postsynaptic activation. However, manipulations of place cell membrane potential and computational modeling indicated that this anti-correlation actually results from a dependence on current synaptic weight such that weak inputs potentiate and strong inputs depress. A network model implementing this bidirectional synaptic learning rule suggested that BTSP enables population activity, rather than pairwise neuronal correlations, to drive neural adaptations to experience.

    1. Neuroscience
    Xingyun Wang, Richard Naud
    Insight

    Triggered activity bursts in place cells can increase and decrease the strength of some inputs.