Sequence co-evolution gives 3D contacts and structures of protein complexes

  1. Thomas A Hopf
  2. Charlotta P.I Schärfe
  3. João P.G.L.M Rodrigues
  4. Anna G Green
  5. Oliver Kohlbacher
  6. Chris Sander
  7. Alexandre M.J.J. Bonvin
  8. Debora S Marks  Is a corresponding author
  1. Harvard University, United States
  2. University of Tübingen, Germany
  3. Bijvoet Center for Biomolecular Research, Utrecht University, Netherlands
  4. Harvard Medical School, United States
  5. Memorial Sloan Kettering Cancer Center, United States

Abstract

Protein-protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein-protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein-protein interaction networks and used for interaction predictions at residue resolution.

Article and author information

Author details

  1. Thomas A Hopf

    Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlotta P.I Schärfe

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. João P.G.L.M Rodrigues

    Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna G Green

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver Kohlbacher

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Chris Sander

    Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandre M.J.J. Bonvin

    Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Debora S Marks

    Harvard University, Boston, United States
    For correspondence
    debbie@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Hopf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,701
    views
  • 2,790
    downloads
  • 424
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas A Hopf
  2. Charlotta P.I Schärfe
  3. João P.G.L.M Rodrigues
  4. Anna G Green
  5. Oliver Kohlbacher
  6. Chris Sander
  7. Alexandre M.J.J. Bonvin
  8. Debora S Marks
(2014)
Sequence co-evolution gives 3D contacts and structures of protein complexes
eLife 3:e03430.
https://doi.org/10.7554/eLife.03430

Share this article

https://doi.org/10.7554/eLife.03430

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.