A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity
Abstract
Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed state. Here we address the regulatory function of this extension or 'strap' and demonstrate it's responsibility for an unusual temperature dependence in ATPase rates. This dependence is a consequence of a thermally-sensitive kinetic barrier between the apo 'open' and ATP-bound 'closed' conformations. The strap stabilizes the closed state through trans-protomer interactions. Displacement of cis-protomer contacts from the apo state is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique cellular and organismal environments.
Article and author information
Author details
Copyright
© 2014, Partridge et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,431
- views
-
- 291
- downloads
-
- 43
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.