Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress

  1. Jie Wang
  2. Kristeen A Pareja
  3. Chris A Kaiser
  4. Carolyn S Sevier  Is a corresponding author
  1. Cornell University, United States
  2. Massachusetts Institute of Technology, United States
8 figures and 2 tables

Figures

BiP contains a conserved cysteine that is dispensable for yeast viability.

(A) Ribbon diagram of human BiP nucleotide binding domain in complex with calcium-ADP (PDB entry 3IUC) (Wisniewska et al., 2010). ADP and the conserved BiP cysteine are shown as colored sticks. …

https://doi.org/10.7554/eLife.03496.003
A cysteine-less BiP strain is sensitive to increased ER oxidation.

(A) CSY170 and CSY278 strains containing an integrated galactose-inducible ERO1* were spotted onto SMM or SMM Gal plates, and plates were incubated for 2 d (glucose) or 3 d (galactose) at 30°C. (B) …

https://doi.org/10.7554/eLife.03496.004
BiP's cysteine is oxidized upon hyperoxidation of the ER by Ero1*.

(A) Schematic for the biotin-switch assay used in panels B and C. (B) The biotin-switch assay was used on lysates prepared from strains CSY316 and CSY319 containing either pCS452 or an empty vector. …

https://doi.org/10.7554/eLife.03496.005
Substitution of the BiP cysteine with an amino acid containing a negatively charged or large side chain enables protection against hyper-oxidation of the ER lumen.

(A and B) CSY278 containing (A) plasmids pCS681, pCS685, pCS802, or empty vector and (B) plasmids pCS681, pCS685, pCS687, pCS688, pCS750, or empty vector were spotted on SMM-leu or SMM Gal-leu …

https://doi.org/10.7554/eLife.03496.006
Replacement of the BiP cysteine with aspartic acid, phenylalanine, tyrosine, or tryptophan results in decreased BiP function.

(A) CSY214 containing the plasmids pCS681, pCS802, pCS687, pCS688, pCS750 or empty vector were spotted onto SMM plates with or without 5-fluoroorotic acid (5-FOA) and incubated for 2 d at 30°C. (B) …

https://doi.org/10.7554/eLife.03496.007
Overexpression of Ero1* causes an accumulation of untranslocated polypeptides.

(A) CSY44 and (B) CSY172 containing plasmids pAF112 (ERO1; E), pCS452 (ERO1*; E*), or empty vector were cultured in galactose medium for 5 hr to induce Ero1 and Suc2 expression. Accumulation of …

https://doi.org/10.7554/eLife.03496.008
A BiP ATPase mutant is not sufficient to protect cells during oxidative stress.

(A) ATP hydrolysis was assessed by determining the fraction of [alpha-32P]ATP converted to [alpha-32P]ADP as described in the 'Materials and methods'. Data represent the means ± SD of three …

https://doi.org/10.7554/eLife.03496.009
BiP cysteine mutants that protect cells during oxidative stress are more effective than wild-type BiP in suppressing polypeptide aggregation.

(AC) Denatured rhodanese was diluted to a final concentration of 1 µM in the presence of 4 µM BSA or wild-type, mutant, peroxide-treated, or alkylated BiP. Samples in panels B and C were mock …

https://doi.org/10.7554/eLife.03496.010

Tables

Table 1

Plasmids

https://doi.org/10.7554/eLife.03496.011
NameDescriptionMarkersSource
pJC8UPRE-LacZ reporterCEN URA3 LEU2Cuozzo and Kaiser, 1999
pCS852UPRE-LacZ reporterCEN URA3This study
pAF112PGAL1-ERO1-mycCEN URA3Sevier et al., 2007
pCS452PGAL1-ERO1*-mycCEN URA3Sevier et al., 2007
pCS504PGAL1-ero1*-C100A-C105A-mycCEN URA3Sevier et al., 2007
pCS584can1::PGAL1-ERO1*-mycCEN URA3This study
pCS739kar2-C63AURA3This study
pCS623KAR2CEN URA3This study
pCS681KAR2CEN LEU2This study
pCS685kar2-C63ACEN LEU2This study
pCS802kar2-C63DCEN LEU2This study
pCS687kar2-C63FCEN LEU2This study
pCS688kar2-C63YCEN LEU2This study
pCS750kar2-C63WCEN LEU2This study
pCS774kar2-T249GCEN LEU2This study
pJW5kar2-C63D-G445DCEN LEU2This study
pCS844kar2-C63F-G445DCEN LEU2This study
pCS845kar2-C63Y-G445DCEN LEU2This study
pCS846kar2-C63W-G445DCEN LEU2This study
pCS757KAR2-FLAGCEN LEU2This study
pCS760kar2-C63A-FLAGCEN LEU2This study
pCS630kar2-(40-668)-His6AMPThis study
pCS631kar2-(40-668)-C63A-His6AMPThis study
pJW4kar2-(40-668)-C63D-His6AMPThis study
pCS658kar2-(40-668)-C63F-His6AMPThis study
pCS643kar2-(40-668)-C63Y-His6AMPThis study
pCS644kar2-(40-668)-C63W-His6AMPThis study
pCS639kar2-(40-668)-T249G-His6AMPThis study
pCS675GST-sec63J-(121-221)AMPThis study
pCS817His6-kar2-(42-682)KANThis study
pCS818His6-kar2-(42-682)-C63AKANThis study
pCS822His6-kar2-(42-682)-C63DKANThis study
pCS819His6-kar2-(42-682)-C63FKANThis study
pCS820His6-kar2-(42-682)-C63YKANThis study
pCS821His6-kar2-(42-682)-C63WKANThis study
pKP113His6-kar2-(42-682)-T249GKANThis study
Table 2

Yeast strains

https://doi.org/10.7554/eLife.03496.012
StrainGenotypeSource
CKY263/CSY5MATa GAL2 ura3-52 leu2-3,112Lab collections
CKY264/CSY6MATα GAL2 ura3-52 leu2-3,112Lab collections
CKY1026/CSY44MATa GAL2 ura3-52 leu2-3,112 ire1Δ::KanMXLab collections
CSY158MATa GAL2 ura3-52 leu2-3,112 ire1Δ::NatMXThis study
CSY172MATa GAL2 ura3-52 leu2-3,112 ire1Δ::NatMX KanMX:PGAL1-SUC2This study
CSY275MATa GAL2 ura3-52 leu2-3,112 kar2-C63AThis study
CSY277MATa GAL2 ura3-52 leu2-3,112 kar2-C63A ire1Δ::NatMXThis study
CSY170MATa GAL2 ura3-52 leu2-3,112 can1::PGAL1-ERO1*-mycThis study
CSY278MATa GAL2 ura3-52 leu2-3,112 kar2-C63A can1::PGAL1-ERO1*-mycThis study
CSY214MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX [pCS623]This study
CSY289MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX [pCS681]This study
CSY290MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX [pCS685]This study
CSY368MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX [pCS802]This study
CSY292MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX [pCS687]This study
CSY293MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX [pCS688]This study
CSY308MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX pep4Δ::NatMX [pCS623]This study
CSY316MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX pep4Δ::NatMX [pCS757]This study
CSY319MATa GAL2 ura3-52 leu2-3,112 kar2Δ::KanMX pep4Δ::NatMX [pCS760]This study

Download links