Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead

  1. Hideyuki Komori
  2. Qi Xiao
  3. Derek H Janssens
  4. Yali Dou
  5. Cheng-Yu Lee  Is a corresponding author
  1. University of Michigan Medical School, United States

Abstract

The mechanisms that maintain the functional heterogeneity of stem cells, which generates diverse differentiated cell types required for organogenesis, are not understood. Here, we report that Trithorax (Trx) actively maintains the heterogeneity of neural stem cells (neuroblasts) in the developing Drosophila larval brain. trx mutant type II neuroblasts gradually adopt a type I neuroblast functional identity, losing the competence to generate intermediate neural progenitors (INPs) and directly generating differentiated cells. Trx regulates a type II neuroblast functional identity in part by maintaining chromatin in the buttonhead (btd) locus in an active state through the histone methyltransferase activity of the SET1/MLL complex. Consistently, btd is necessary and sufficient for eliciting a type II neuroblast functional identity. Furthermore, over-expression of btd restores the competence to generate INPs in trx mutant type II neuroblasts. Thus, Trx instructs a type II neuroblast functional identity by epigenetically promoting Btd expression, thereby maintaining neuroblast functional heterogeneity.

Article and author information

Author details

  1. Hideyuki Komori

    University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qi Xiao

    University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Derek H Janssens

    University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yali Dou

    University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cheng-Yu Lee

    University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    leecheng@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Received: May 28, 2014
  2. Accepted: October 3, 2014
  3. Accepted Manuscript published: October 6, 2014 (version 1)
  4. Version of Record published: November 6, 2014 (version 2)

Copyright

© 2014, Komori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,821
    Page views
  • 757
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hideyuki Komori
  2. Qi Xiao
  3. Derek H Janssens
  4. Yali Dou
  5. Cheng-Yu Lee
(2014)
Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead
eLife 3:e03502.
https://doi.org/10.7554/eLife.03502

Further reading

    1. Stem Cells and Regenerative Medicine
    2. Developmental Biology
    Yanrui Jiang, Heinrich Reichert
    Insight

    In the developing fruit fly brain, a protein called Trithorax increases the number of neural cells produced from a single stem cell, in part by regulating the transcription of the target genes buttonhead and pointed.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Irina AD Mancini, Riccardo Levato ... Jos Malda
    Research Article

    During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.