1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Discovery of a small molecule that inhibits bacterial ribosome biogenesis

  1. Jonathan M Stokes
  2. Joseph H Davis
  3. Chand S Mangat
  4. James R Williamson
  5. Eric D Brown  Is a corresponding author
  1. McMaster University, Canada
  2. The Scripps Research Institute, United States
Research Article
  • Cited 53
  • Views 6,476
  • Annotations
Cite this article as: eLife 2014;3:e03574 doi: 10.7554/eLife.03574

Abstract

While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 15{degree sign}C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing protein synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine activity mapped solely to the poorly characterized domain II of translation initiation factor IF2, and prevented the binding of lamotrigine to IF2 in vitro. This work establishes lamotrigine as a widely available chemical probe of bacterial ribosome biogenesis and suggests a role for E. coli IF2 in ribosome assembly.

Article and author information

Author details

  1. Jonathan M Stokes

    McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph H Davis

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chand S Mangat

    McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. James R Williamson

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric D Brown

    McMaster University, Hamilton, Canada
    For correspondence
    ebrown@mcmaster.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Roberto Kolter, Harvard Medical School, United States

Publication history

  1. Received: June 4, 2014
  2. Accepted: September 17, 2014
  3. Accepted Manuscript published: September 18, 2014 (version 1)
  4. Version of Record published: October 7, 2014 (version 2)

Copyright

© 2014, Stokes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,476
    Page views
  • 506
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Rania Elsabrouty et al.
    Research Article Updated

    UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jesse M Hansen et al.
    Research Article Updated

    Many metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or pH-insensitive mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.