Discovery of a small molecule that inhibits bacterial ribosome biogenesis

  1. Jonathan M Stokes
  2. Joseph H Davis
  3. Chand S Mangat
  4. James R Williamson
  5. Eric D Brown  Is a corresponding author
  1. McMaster University, Canada
  2. The Scripps Research Institute, United States

Abstract

While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 15{degree sign}C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing protein synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine activity mapped solely to the poorly characterized domain II of translation initiation factor IF2, and prevented the binding of lamotrigine to IF2 in vitro. This work establishes lamotrigine as a widely available chemical probe of bacterial ribosome biogenesis and suggests a role for E. coli IF2 in ribosome assembly.

Article and author information

Author details

  1. Jonathan M Stokes

    McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph H Davis

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chand S Mangat

    McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. James R Williamson

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric D Brown

    McMaster University, Hamilton, Canada
    For correspondence
    ebrown@mcmaster.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Roberto Kolter, Harvard Medical School, United States

Version history

  1. Received: June 4, 2014
  2. Accepted: September 17, 2014
  3. Accepted Manuscript published: September 18, 2014 (version 1)
  4. Version of Record published: October 7, 2014 (version 2)

Copyright

© 2014, Stokes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,596
    views
  • 603
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan M Stokes
  2. Joseph H Davis
  3. Chand S Mangat
  4. James R Williamson
  5. Eric D Brown
(2014)
Discovery of a small molecule that inhibits bacterial ribosome biogenesis
eLife 3:e03574.
https://doi.org/10.7554/eLife.03574

Share this article

https://doi.org/10.7554/eLife.03574

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.