Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters

  1. Zachary Lee Johnson
  2. Jun-Ho Lee
  3. Kiyoun Lee
  4. Minhee Lee
  5. Do-Yeon Kwon
  6. Jiyong Hong
  7. Seok-Yong Lee  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Duke University, United States

Abstract

Concentrative nucleoside transporters (CNTs) are responsible for cellular entry of nucleosides, which serve as precursors to nucleic acids and act as signaling molecules. CNTs also play a crucial role in the uptake of nucleoside-derived drugs, including anticancer and antiviral agents. Understanding how CNTs recognize and import their substrates could not only lead to a better understanding of nucleoside-related biological processes but also the design of nucleoside-derived drugs that can better reach their targets. Here we present a combination of x-ray crystallographic and equilibrium-binding studies probing the molecular origins of nucleoside and nucleoside drug selectivity of a CNT from Vibrio cholerae. We then used this information in chemically modifying an anticancer drug so that is better transported by and selective for a single human CNT subtype. This work provides proof of principle for utilizing transporter structural and functional information for the design of compounds that enter cells more efficiently and selectively.

Article and author information

Author details

  1. Zachary Lee Johnson

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jun-Ho Lee

    Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiyoun Lee

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Minhee Lee

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Do-Yeon Kwon

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiyong Hong

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Seok-Yong Lee

    Duke University Medical Center, Durham, United States
    For correspondence
    sylee@biochem.duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Johnson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,189
    views
  • 443
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary Lee Johnson
  2. Jun-Ho Lee
  3. Kiyoun Lee
  4. Minhee Lee
  5. Do-Yeon Kwon
  6. Jiyong Hong
  7. Seok-Yong Lee
(2014)
Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters
eLife 3:e03604.
https://doi.org/10.7554/eLife.03604

Share this article

https://doi.org/10.7554/eLife.03604

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.