1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Large-scale filament formation inhibits the activity of CTP synthetase

  1. Rachael Barry
  2. Anne-Florence Bitbol
  3. Alexander Lorestani
  4. Emeric J Charles
  5. Chris H Habrian
  6. Jesse M Hansen
  7. Hsin-Jung Li
  8. Enoch P Baldwin
  9. Ned S Wingreen
  10. Justin M Kollman
  11. Zemer Gitai  Is a corresponding author
  1. Princeton University, United States
  2. McGill University, Canada
  3. University of California, Davis, United States
Research Article
  • Cited 79
  • Views 3,665
  • Annotations
Cite this article as: eLife 2014;3:e03638 doi: 10.7554/eLife.03638

Abstract

CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity we show that polymerization inhibits activity and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously-uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable.

Article and author information

Author details

  1. Rachael Barry

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne-Florence Bitbol

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Lorestani

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Emeric J Charles

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Chris H Habrian

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesse M Hansen

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Hsin-Jung Li

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Enoch P Baldwin

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ned S Wingreen

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Justin M Kollman

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Zemer Gitai

    Princeton University, Princeton, United States
    For correspondence
    zgitai@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mohan Balasubramanian, University of Warwick, United Kingdom

Publication history

  1. Received: June 9, 2014
  2. Accepted: July 15, 2014
  3. Accepted Manuscript published: July 16, 2014 (version 1)
  4. Version of Record published: August 11, 2014 (version 2)

Copyright

© 2014, Barry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,665
    Page views
  • 480
    Downloads
  • 79
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Sara Alvira et al.
    Research Article Updated

    The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent – hydrophobic β-barrel Outer-Membrane Proteins (OMPs) – are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the β-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) – an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane ‘insertase’ YidC – contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.

    1. Biochemistry and Chemical Biology
    Donghyuk Shin et al.
    Research Article Updated

    Legionella pneumophila causes a severe pneumonia known as Legionnaires’ disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1’), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host–pathogen interactions.