Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins

  1. Joseph Atherton
  2. Irene Farabella
  3. I-Mei Yu
  4. Steven S Rosenfeld
  5. Anne Houdusse
  6. Maya Topf
  7. Carolyn A Moores  Is a corresponding author
  1. Birkbeck College, University of London, United Kingdom
  2. Institut Curie, Centre National de la Recherche Scientifique, France
  3. Lerner Research Institute, Cleveland Clinic, United States

Abstract

Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles - including their nucleotide-free states - at ~7Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin-microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface.

Article and author information

Author details

  1. Joseph Atherton

    Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene Farabella

    Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. I-Mei Yu

    Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven S Rosenfeld

    Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Houdusse

    Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maya Topf

    Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn A Moores

    Birkbeck College, University of London, London, United Kingdom
    For correspondence
    c.moores@mail.cryst.bbk.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,089
    views
  • 563
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Atherton
  2. Irene Farabella
  3. I-Mei Yu
  4. Steven S Rosenfeld
  5. Anne Houdusse
  6. Maya Topf
  7. Carolyn A Moores
(2014)
Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins
eLife 3:e03680.
https://doi.org/10.7554/eLife.03680

Share this article

https://doi.org/10.7554/eLife.03680

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.