Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins

  1. Joseph Atherton
  2. Irene Farabella
  3. I-Mei Yu
  4. Steven S Rosenfeld
  5. Anne Houdusse
  6. Maya Topf
  7. Carolyn A Moores  Is a corresponding author
  1. Birkbeck College, University of London, United Kingdom
  2. Institut Curie, Centre National de la Recherche Scientifique, France
  3. Lerner Research Institute, Cleveland Clinic, United States

Abstract

Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles - including their nucleotide-free states - at ~7Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin-microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface.

Article and author information

Author details

  1. Joseph Atherton

    Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene Farabella

    Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. I-Mei Yu

    Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven S Rosenfeld

    Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Houdusse

    Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maya Topf

    Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn A Moores

    Birkbeck College, University of London, London, United Kingdom
    For correspondence
    c.moores@mail.cryst.bbk.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anthony A Hyman, Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Version history

  1. Received: June 13, 2014
  2. Accepted: September 8, 2014
  3. Accepted Manuscript published: September 10, 2014 (version 1)
  4. Accepted Manuscript updated: September 17, 2014 (version 2)
  5. Version of Record published: October 8, 2014 (version 3)

Copyright

© 2014, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,039
    views
  • 555
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Atherton
  2. Irene Farabella
  3. I-Mei Yu
  4. Steven S Rosenfeld
  5. Anne Houdusse
  6. Maya Topf
  7. Carolyn A Moores
(2014)
Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins
eLife 3:e03680.
https://doi.org/10.7554/eLife.03680

Share this article

https://doi.org/10.7554/eLife.03680

Further reading

    1. Structural Biology and Molecular Biophysics
    Simon M Lichtinger, Joanne L Parker ... Philip C Biggin
    Research Article

    Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2. Nevertheless, these studies leave open important questions regarding the mechanism of proton and substrate coupling, while simultaneously providing a unique opportunity to investigate these processes using molecular dynamics (MD) simulations. Here, we employ extensive unbiased and enhanced-sampling MD to map out the full SLC15A2 conformational cycle and its thermodynamic driving forces. By computing conformational free energy landscapes in different protonation states and in the absence or presence of peptide substrate, we identify a likely sequence of intermediate protonation steps that drive inward-directed alternating access. These simulations identify key differences in the extracellular gate between mammalian and bacterial POTs, which we validate experimentally in cell-based transport assays. Our results from constant-PH MD and absolute binding free energy (ABFE) calculations also establish a mechanistic link between proton binding and peptide recognition, revealing key details underpining secondary active transport in POTs. This study provides a vital step forward in understanding proton-coupled peptide and drug transport in mammals and pave the way to integrate knowledge of solute carrier structural biology with enhanced drug design to target tissue and organ bioavailability.

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.