A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family

  1. Qing Yao
  2. Qiuhe Lu
  3. Xiaobo Wan
  4. Feng Song
  5. Yue Xu
  6. Mo Hu
  7. Alla Zamyatina
  8. Xiaoyun Liu
  9. Niu Huang
  10. Ping Zhu
  11. Feng Shao  Is a corresponding author
  1. National Institute of Biological Sciences, China
  2. Institute of Biophysics, Chinese Academy of Sciences, China
  3. Peking University, China
  4. University of Natural Resources and Life Sciences, Austria

Abstract

A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyper-glycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). Crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. Structure of ADP-D, D-heptose-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Cryo-EM analyses uncover a TibC-TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex.

Article and author information

Author details

  1. Qing Yao

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  2. Qiuhe Lu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  3. Xiaobo Wan

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  4. Feng Song

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  5. Yue Xu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  6. Mo Hu

    Peking University, Bejing, China
    Competing interests
    No competing interests declared.
  7. Alla Zamyatina

    University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Xiaoyun Liu

    Peking University, Bejing, China
    Competing interests
    No competing interests declared.
  9. Niu Huang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  10. Ping Zhu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  11. Feng Shao

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    shaofeng@nibs.ac.cn
    Competing interests
    Feng Shao, Reviewing editor, eLife.

Copyright

© 2014, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,752
    views
  • 418
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing Yao
  2. Qiuhe Lu
  3. Xiaobo Wan
  4. Feng Song
  5. Yue Xu
  6. Mo Hu
  7. Alla Zamyatina
  8. Xiaoyun Liu
  9. Niu Huang
  10. Ping Zhu
  11. Feng Shao
(2014)
A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family
eLife 3:e03714.
https://doi.org/10.7554/eLife.03714

Share this article

https://doi.org/10.7554/eLife.03714

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.

    1. Structural Biology and Molecular Biophysics
    Kazi A Hossain, Lukasz Nierzwicki ... Giulia Palermo
    Research Article

    xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognising a series of alternative protospacer adjacent motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9’s expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.