Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians

  1. Alberto Stolfi
  2. Elijah K Lowe
  3. Claudia Racioppi
  4. Filomena Ristoratore
  5. C Titus Brown
  6. Billie J Swalla
  7. Lionel Christiaen  Is a corresponding author
  1. New York University, United States
  2. Michigan State University, United States
  3. Stazione Zoologica Anton Dohrn, Italy
  4. University of Washington, United States

Abstract

Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. Here we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or "unintelligibility", of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-actingelements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis.

Article and author information

Author details

  1. Alberto Stolfi

    New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elijah K Lowe

    Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Claudia Racioppi

    Stazione Zoologica Anton Dohrn, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Filomena Ristoratore

    Stazione Zoologica Anton Dohrn, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. C Titus Brown

    Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Billie J Swalla

    University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lionel Christiaen

    New York University, New York, United States
    For correspondence
    lc121@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Stolfi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,076
    views
  • 229
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alberto Stolfi
  2. Elijah K Lowe
  3. Claudia Racioppi
  4. Filomena Ristoratore
  5. C Titus Brown
  6. Billie J Swalla
  7. Lionel Christiaen
(2014)
Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians
eLife 3:e03728.
https://doi.org/10.7554/eLife.03728

Share this article

https://doi.org/10.7554/eLife.03728

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.