How IGF-1 activates its receptor

  1. Jennifer M Kavran
  2. Jacqueline M McCabe
  3. Patrick O Byrne
  4. Mary Katherine Connacher
  5. Zhihong Wang
  6. Alexander Ramek
  7. Sarvenaz Sarabipour
  8. Yibing Shan
  9. David E Shaw
  10. Kalina Hristova
  11. Philip A Cole
  12. Daniel Leahy  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. University of the Sciences, United States
  3. D.E. Shaw Research, United States
  4. Johns Hopkins University, United States
  5. Columbia University, United States
  6. Johns Hopkins, United States

Abstract

The Type I Insulin-like Growth Factor Receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.

Article and author information

Author details

  1. Jennifer M Kavran

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Jacqueline M McCabe

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Patrick O Byrne

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Mary Katherine Connacher

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Zhihong Wang

    University of the Sciences, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Alexander Ramek

    D.E. Shaw Research, New York, United States
    Competing interests
    No competing interests declared.
  7. Sarvenaz Sarabipour

    Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Yibing Shan

    D.E. Shaw Research, New York, United States
    Competing interests
    No competing interests declared.
  9. David E Shaw

    D.E. Shaw Research, New York, United States
    Competing interests
    No competing interests declared.
  10. Kalina Hristova

    Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Philip A Cole

    Columbia University, New York, United States
    Competing interests
    Philip A Cole, Reviewing editor, eLife.
  12. Daniel Leahy

    Johns Hopkins, Baltimore, United States
    For correspondence
    dleahy@jhmi.edu
    Competing interests
    No competing interests declared.

Copyright

© 2014, Kavran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,123
    views
  • 1,704
    downloads
  • 161
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer M Kavran
  2. Jacqueline M McCabe
  3. Patrick O Byrne
  4. Mary Katherine Connacher
  5. Zhihong Wang
  6. Alexander Ramek
  7. Sarvenaz Sarabipour
  8. Yibing Shan
  9. David E Shaw
  10. Kalina Hristova
  11. Philip A Cole
  12. Daniel Leahy
(2014)
How IGF-1 activates its receptor
eLife 3:e03772.
https://doi.org/10.7554/eLife.03772

Share this article

https://doi.org/10.7554/eLife.03772

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.