Dominant drug targets suppress the emergence of antiviral resistance

  1. Elizabeth J Tanner
  2. Hong-mei Liu
  3. M Steven Oberste
  4. Mark Pallansch
  5. Marc S Collett
  6. Karla Kirkegaard  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Centers for Disease Control and Prevention, United States
  3. ViroDefense, Inc., United States

Abstract

The emergence of drug resistance can defeat the successful treatment of pathogens that display high mutation rates, as exemplified by RNA viruses. Here we detail a new paradigm in which a single compound directed against a 'dominant drug target' suppresses the emergence of naturally occurring drug-resistant variants in mice and cultured cells. All new drug-resistant viruses arise during intracellular replication and initially express their phenotypes in the presence of drug-susceptible genomes. For the targets of most anti-viral compounds, the presence of these drug-susceptible viral genomes does not prevent the selection of drug resistance. Here we show that, for an inhibitor of the function of oligomeric capsid proteins of poliovirus, the expression of drug-susceptible genomes causes chimeric oligomers to form, thus rendering the drug-susceptible genomes dominant. The use of dominant drug targets should suppress drug resistance whenever multiple genomes arise in the same cell and express products in a common milieu.

Article and author information

Author details

  1. Elizabeth J Tanner

    Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Hong-mei Liu

    Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  3. M Steven Oberste

    Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  4. Mark Pallansch

    Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  5. Marc S Collett

    ViroDefense, Inc., Rockville, United States
    Competing interests
    Marc S Collett, President of ViroDefense, Inc., the sponsoring firm for development of V-073.
  6. Karla Kirkegaard

    Stanford University School of Medicine, Stanford, United States
    For correspondence
    karlak@stanford.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Wenhui Li, National Institute of Biological Sciences, Beijing, China

Ethics

Animal experimentation: Mice used in these studies were bred and housed under specific pathogen-free conditions at the Stanford University animal care facility, which is accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care, Int. All experiments were approved by Stanford's Institutional Animal Care and Use Committee (Administrative Panel of Laboratory Animal Care). The Assurance number for this panel is A3213-01; the Protocol ID is 9296. For survival studies, mice were euthanized when moribund or upon initial signs of paresis/paralysis.

Version history

  1. Received: June 28, 2014
  2. Accepted: November 1, 2014
  3. Accepted Manuscript published: November 3, 2014 (version 1)
  4. Version of Record published: December 8, 2014 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,227
    views
  • 258
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth J Tanner
  2. Hong-mei Liu
  3. M Steven Oberste
  4. Mark Pallansch
  5. Marc S Collett
  6. Karla Kirkegaard
(2014)
Dominant drug targets suppress the emergence of antiviral resistance
eLife 3:e03830.
https://doi.org/10.7554/eLife.03830

Share this article

https://doi.org/10.7554/eLife.03830

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.