1. Chromosomes and Gene Expression
  2. Human Biology and Medicine
Download icon

Dominant drug targets suppress the emergence of antiviral resistance

  1. Elizabeth J Tanner
  2. Hong-mei Liu
  3. M Steven Oberste
  4. Mark Pallansch
  5. Marc S Collett
  6. Karla Kirkegaard  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Centers for Disease Control and Prevention, United States
  3. ViroDefense, Inc., United States
Research Article
  • Cited 21
  • Views 1,904
  • Annotations
Cite this article as: eLife 2014;3:e03830 doi: 10.7554/eLife.03830

Abstract

The emergence of drug resistance can defeat the successful treatment of pathogens that display high mutation rates, as exemplified by RNA viruses. Here we detail a new paradigm in which a single compound directed against a 'dominant drug target' suppresses the emergence of naturally occurring drug-resistant variants in mice and cultured cells. All new drug-resistant viruses arise during intracellular replication and initially express their phenotypes in the presence of drug-susceptible genomes. For the targets of most anti-viral compounds, the presence of these drug-susceptible viral genomes does not prevent the selection of drug resistance. Here we show that, for an inhibitor of the function of oligomeric capsid proteins of poliovirus, the expression of drug-susceptible genomes causes chimeric oligomers to form, thus rendering the drug-susceptible genomes dominant. The use of dominant drug targets should suppress drug resistance whenever multiple genomes arise in the same cell and express products in a common milieu.

Article and author information

Author details

  1. Elizabeth J Tanner

    Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Hong-mei Liu

    Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  3. M Steven Oberste

    Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  4. Mark Pallansch

    Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  5. Marc S Collett

    ViroDefense, Inc., Rockville, United States
    Competing interests
    Marc S Collett, President of ViroDefense, Inc., the sponsoring firm for development of V-073.
  6. Karla Kirkegaard

    Stanford University School of Medicine, Stanford, United States
    For correspondence
    karlak@stanford.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: Mice used in these studies were bred and housed under specific pathogen-free conditions at the Stanford University animal care facility, which is accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care, Int. All experiments were approved by Stanford's Institutional Animal Care and Use Committee (Administrative Panel of Laboratory Animal Care). The Assurance number for this panel is A3213-01; the Protocol ID is 9296. For survival studies, mice were euthanized when moribund or upon initial signs of paresis/paralysis.

Reviewing Editor

  1. Wenhui Li, National Institute of Biological Sciences, Beijing, China

Publication history

  1. Received: June 28, 2014
  2. Accepted: November 1, 2014
  3. Accepted Manuscript published: November 3, 2014 (version 1)
  4. Version of Record published: December 8, 2014 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,904
    Page views
  • 204
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Biochemistry and Chemical Biology
    Bilge Argunhan et al.
    Research Article
    1. Chromosomes and Gene Expression
    Jamie R Wangen, Rachel Green
    Research Article Updated