Flattop regulates basal body docking and positioning in mono- and multiciliated cells

  1. Moritz Gegg
  2. Anika Böttcher
  3. Ingo Burtscher
  4. Stefan Hasenöder
  5. Claude Van Campenhout
  6. Michaela Aichler
  7. Axel Walch
  8. Seth G. N. Grant
  9. Heiko Lickert  Is a corresponding author
  1. Helmholtz Center Munich, Germany
  2. Université libre de Bruxelles, Belgium
  3. University of Edinburgh, United Kingdom

Abstract

Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. Here, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3 and Fltp localize directly adjacent at the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease and asymmetric cell division.

Article and author information

Author details

  1. Moritz Gegg

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Anika Böttcher

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ingo Burtscher

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Hasenöder

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Claude Van Campenhout

    Université libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Michaela Aichler

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Axel Walch

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth G. N. Grant

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Heiko Lickert

    Helmholtz Center Munich, Munich, Germany
    For correspondence
    heiko.lickert@helmholtz-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Mouse keeping was done at the central facilities at HMGU in accordance with the German animal welfare legislation and acknowledged guidelines of the Society of Laboratory Animals (GV-SOLAS) and of the Federation of Laboratory Animal Science Associations (FELASA). Post-mortem examination of organs was not subject to regulatory authorization.

Copyright

© 2014, Gegg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,475
    views
  • 506
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moritz Gegg
  2. Anika Böttcher
  3. Ingo Burtscher
  4. Stefan Hasenöder
  5. Claude Van Campenhout
  6. Michaela Aichler
  7. Axel Walch
  8. Seth G. N. Grant
  9. Heiko Lickert
(2014)
Flattop regulates basal body docking and positioning in mono- and multiciliated cells
eLife 3:e03842.
https://doi.org/10.7554/eLife.03842

Share this article

https://doi.org/10.7554/eLife.03842

Further reading

    1. Cell Biology
    Roberto Notario Manzano, Thibault Chaze ... Christel Brou
    Research Article

    Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.

    1. Cell Biology
    Ming Zhang, Guangyi Du ... Wei Chen
    Research Article

    Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.