Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems

  1. Katja Zieske
  2. Petra Schwille  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany

Abstract

Intracellular protein gradients are significant determinants of spatial organization. However, little is known about how protein patterns are established, and how their positional information directs downstream processes. We have accomplished the reconstitution of a protein concentration gradient that directs the assembly of the cell division machinery in E.coli from the bottom-up. Reconstituting self-organized oscillations of MinCDE proteins in membrane-clad soft-polymer compartments, we demonstrate that distinct time-averaged protein concentration gradients are established. Our minimal system allows to study complex organizational principles, such as spatial control of division site placement by intracellular protein gradients, under simplified conditions. In particular, we demonstrate that FtsZ, which marks the cell division site in many bacteria, can be targeted to the middle of a cell-like compartment. Moreover, we show that compartment geometry plays a major role in Min gradient establishment, and provide evidence for a geometry-mediated mechanism to partition Min proteins during bacterial development.

Article and author information

Author details

  1. Katja Zieske

    Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Petra Schwille

    Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
    For correspondence
    schwille@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mohan Balasubramanian, University of Warwick, United Kingdom

Publication history

  1. Received: July 10, 2014
  2. Accepted: September 30, 2014
  3. Accepted Manuscript published: October 1, 2014 (version 1)
  4. Version of Record published: November 3, 2014 (version 2)

Copyright

© 2014, Zieske & Schwille

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,755
    Page views
  • 717
    Downloads
  • 95
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katja Zieske
  2. Petra Schwille
(2014)
Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems
eLife 3:e03949.
https://doi.org/10.7554/eLife.03949
  1. Further reading

Further reading

    1. Cell Biology
    2. Neuroscience
    Alexander R Mikesell, Olena Isaeva ... Cheryl L Stucky
    Research Article Updated

    Epidermal keratinocytes mediate touch sensation by detecting and encoding tactile information to sensory neurons. However, the specific mechanotransducers that enable keratinocytes to respond to mechanical stimulation are unknown. Here, we found that the mechanically-gated ion channel PIEZO1 is a key keratinocyte mechanotransducer. Keratinocyte expression of PIEZO1 is critical for normal sensory afferent firing and behavioral responses to mechanical stimuli in mice.

    1. Cell Biology
    2. Genetics and Genomics
    Nicholas P Lesner, Xun Wang ... Prashant Mishra
    Research Article

    Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.