Translation of 5' leaders is pervasive in genes resistant to eIF2 repression

  1. Dmitry E Andreev
  2. Patrick BF O'Connor
  3. Ciara Fahey
  4. Elaine M Kenny
  5. Ilya M Terenin
  6. Sergey E Dmitriev
  7. Paul Cormican
  8. Derek W Morris
  9. Ivan N Shatsky
  10. Pavel V Baranov  Is a corresponding author
  1. Lomonosov Moscow State University, Russia
  2. University College Cork, Ireland
  3. Trinity College Dublin, Ireland

Abstract

Eukaryotic cells rapidly reduce protein synthesis in response to various stress conditions. This can be achieved by the phosphorylation-mediated inactivation of a key translation initiation factor, eIF2. However, the persistent translation of certain mRNAs is required for deployment of an adequate stress response. We carried out ribosome profiling of cultured human cells under conditions of severe stress induced with sodium arsenite. Although this led to a ~4.5-fold general translational repression, the protein coding ORFs of certain individual mRNAs exhibited resistance to the inhibition. Nearly all resistant transcripts possess at least one efficiently translated uORF that repress translation of the main coding ORF under normal conditions. Site specific mutagenesis of two identified stress resistant mRNAs (PPP1R15B and IFRD1) demonstrated that a single uORF is sufficient for eIF2-mediated translation control in both cases. Phylogenetic analysis suggests that at least two regulatory uORFs (namely in SLC35A4 and MIEF1) encode functional protein products.

Article and author information

Author details

  1. Dmitry E Andreev

    Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick BF O'Connor

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Ciara Fahey

    Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  4. Elaine M Kenny

    Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ilya M Terenin

    Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
    Competing interests
    The authors declare that no competing interests exist.
  6. Sergey E Dmitriev

    Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Cormican

    Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Derek W Morris

    Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ivan N Shatsky

    Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
    Competing interests
    The authors declare that no competing interests exist.
  10. Pavel V Baranov

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    For correspondence
    brave.oval.pan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Andreev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,235
    views
  • 1,680
    downloads
  • 308
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry E Andreev
  2. Patrick BF O'Connor
  3. Ciara Fahey
  4. Elaine M Kenny
  5. Ilya M Terenin
  6. Sergey E Dmitriev
  7. Paul Cormican
  8. Derek W Morris
  9. Ivan N Shatsky
  10. Pavel V Baranov
(2015)
Translation of 5' leaders is pervasive in genes resistant to eIF2 repression
eLife 4:e03971.
https://doi.org/10.7554/eLife.03971

Share this article

https://doi.org/10.7554/eLife.03971

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.