Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

  1. Alan R Lowe
  2. Jeffrey H Tang
  3. Jaime Yassif
  4. Michael Graf
  5. William Y C Huang
  6. Jay T Groves
  7. Karsten Weis
  8. Jan T Liphardt  Is a corresponding author
  1. University College London and Birkbeck College, United Kingdom
  2. Stanford University, United States
  3. University of California, Berkeley, United States
  4. École polytechnique fédérale de Lausanne, Switzerland
  5. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the permeability of the NPC itself has been unknown. Here, we identify a stable pool of impβ at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability.

Article and author information

Author details

  1. Alan R Lowe

    Institute for Structural and Molecular Biology, University College London and Birkbeck College, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Jeffrey H Tang

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Jaime Yassif

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Michael Graf

    Section of Life Sciences and Technologies, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  5. William Y C Huang

    Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Karsten Weis

    Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Karsten Weis, Reviewing editor, eLife.
  8. Jan T Liphardt

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    jan.liphardt@stanford.edu
    Competing interests
    No competing interests declared.

Copyright

© 2015, Lowe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,395
    views
  • 1,200
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan R Lowe
  2. Jeffrey H Tang
  3. Jaime Yassif
  4. Michael Graf
  5. William Y C Huang
  6. Jay T Groves
  7. Karsten Weis
  8. Jan T Liphardt
(2015)
Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner
eLife 4:e04052.
https://doi.org/10.7554/eLife.04052

Share this article

https://doi.org/10.7554/eLife.04052

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.