Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

  1. Alan R Lowe
  2. Jeffrey H Tang
  3. Jaime Yassif
  4. Michael Graf
  5. William Y C Huang
  6. Jay T Groves
  7. Karsten Weis
  8. Jan T Liphardt  Is a corresponding author
  1. University College London and Birkbeck College, United Kingdom
  2. Stanford University, United States
  3. University of California, Berkeley, United States
  4. École polytechnique fédérale de Lausanne, Switzerland
  5. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the permeability of the NPC itself has been unknown. Here, we identify a stable pool of impβ at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability.

Article and author information

Author details

  1. Alan R Lowe

    Institute for Structural and Molecular Biology, University College London and Birkbeck College, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Jeffrey H Tang

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Jaime Yassif

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Michael Graf

    Section of Life Sciences and Technologies, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  5. William Y C Huang

    Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Karsten Weis

    Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Karsten Weis, Reviewing editor, eLife.
  8. Jan T Liphardt

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    jan.liphardt@stanford.edu
    Competing interests
    No competing interests declared.

Copyright

© 2015, Lowe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,384
    views
  • 1,196
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan R Lowe
  2. Jeffrey H Tang
  3. Jaime Yassif
  4. Michael Graf
  5. William Y C Huang
  6. Jay T Groves
  7. Karsten Weis
  8. Jan T Liphardt
(2015)
Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner
eLife 4:e04052.
https://doi.org/10.7554/eLife.04052

Share this article

https://doi.org/10.7554/eLife.04052

Further reading

    1. Structural Biology and Molecular Biophysics
    Parveen Goyal, KanagaVijayan Dhanabalan ... Subramanian Ramaswamy
    Research Advance

    N -Acetylneuraminic acid (Neu5Ac) is a negatively charged nine-carbon amino sugar that is often the peripheral sugar in human cell-surface glycoconjugates. Some bacteria scavenge, import, and metabolize Neu5Ac or redeploy it on their cell surfaces for immune evasion. The import of Neu5Ac by many bacteria is mediated by tripartite ATP-independent periplasmic (TRAP) transporters. We have previously reported the structures of SiaQM, a membrane-embedded component of the Haemophilus influenzae TRAP transport system, (Currie et al., 2024). However, none of the published structures contain Neu5Ac bound to SiaQM. This information is critical for defining the transport mechanism and for further structure-activity relationship studies. Here, we report the structures of Fusobacterium nucleatum SiaQM with and without Neu5Ac. Both structures are in an inward (cytoplasmic side) facing conformation. The Neu5Ac-bound structure reveals the interactions of Neu5Ac with the transporter and its relationship with the Na+ binding sites. Two of the Na+-binding sites are similar to those described previously. We identify a third metal-binding site that is further away and buried in the elevator domain. Ser300 and Ser345 interact with the C1-carboxylate group of Neu5Ac. Proteoliposome-based transport assays showed that Ser300-Neu5Ac interaction is critical for transport, whereas Ser345 is dispensable. Neu5Ac primarily interacts with residues in the elevator domain of the protein, thereby supporting the elevator with an operator mechanism. The residues interacting with Neu5Ac are conserved, providing fundamental information required to design inhibitors against this class of proteins.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.