Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

  1. Alan R Lowe
  2. Jeffrey H Tang
  3. Jaime Yassif
  4. Michael Graf
  5. William Y C Huang
  6. Jay T Groves
  7. Karsten Weis
  8. Jan T Liphardt  Is a corresponding author
  1. University College London and Birkbeck College, United Kingdom
  2. Stanford University, United States
  3. University of California, Berkeley, United States
  4. École polytechnique fédérale de Lausanne, Switzerland
  5. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the permeability of the NPC itself has been unknown. Here, we identify a stable pool of impβ at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability.

Article and author information

Author details

  1. Alan R Lowe

    Institute for Structural and Molecular Biology, University College London and Birkbeck College, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Jeffrey H Tang

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Jaime Yassif

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Michael Graf

    Section of Life Sciences and Technologies, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  5. William Y C Huang

    Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Karsten Weis

    Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Karsten Weis, Reviewing editor, eLife.
  8. Jan T Liphardt

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    jan.liphardt@stanford.edu
    Competing interests
    No competing interests declared.

Copyright

© 2015, Lowe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,382
    views
  • 1,196
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan R Lowe
  2. Jeffrey H Tang
  3. Jaime Yassif
  4. Michael Graf
  5. William Y C Huang
  6. Jay T Groves
  7. Karsten Weis
  8. Jan T Liphardt
(2015)
Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner
eLife 4:e04052.
https://doi.org/10.7554/eLife.04052

Share this article

https://doi.org/10.7554/eLife.04052

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.