Abstract

The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10 yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease.

Article and author information

Author details

  1. Hermann C Altmeppen

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Johannes Prox

    Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Susanne Krasemann

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Berta Puig

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Katharina Kruszewski

    Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Frank Dohler

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Bernreuther

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ana Hoxha

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Luise Linsenmeier

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Beata Sikorska

    Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
    Competing interests
    The authors declare that no competing interests exist.
  11. Pawel P Liberski

    Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
    Competing interests
    The authors declare that no competing interests exist.
  12. Udo Bartsch

    Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Paul Saftig

    Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Markus Glatzel

    Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    m.glatzel@uke.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bart De Strooper, VIB Center for the Biology of Disease, KU Leuven, Belgium

Ethics

Animal experimentation: Our study was carried out in accordance with the principles of laboratory animal care (NIH publication No. 86-23, revised 1985) as well as the recommendations in the Guide for the Care and Use of Laboratory Animals of the German Animal Welfare Act on protection of animals. The protocol was approved by the Committee on the Ethics of the Freie und Hansestadt Hamburg - Amt für Gesundheit und Verbraucherschutz (permit number 48/09, 81/07 and 84/13). Every effort was made to minimize suffering.

Version history

  1. Received: August 6, 2014
  2. Accepted: February 4, 2015
  3. Accepted Manuscript published: February 5, 2015 (version 1)
  4. Version of Record published: March 3, 2015 (version 2)

Copyright

© 2015, Altmeppen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,110
    views
  • 496
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hermann C Altmeppen
  2. Johannes Prox
  3. Susanne Krasemann
  4. Berta Puig
  5. Katharina Kruszewski
  6. Frank Dohler
  7. Christian Bernreuther
  8. Ana Hoxha
  9. Luise Linsenmeier
  10. Beata Sikorska
  11. Pawel P Liberski
  12. Udo Bartsch
  13. Paul Saftig
  14. Markus Glatzel
(2015)
The sheddase ADAM10 is a potent modulator of prion disease
eLife 4:e04260.
https://doi.org/10.7554/eLife.04260

Share this article

https://doi.org/10.7554/eLife.04260

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Yi-Shin Chang, Kai Huang ... David L Perkins
    Research Article

    Background:

    End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines.

    Methods:

    The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response.

    Results:

    Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development.

    Conclusions:

    Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD.

    Funding:

    F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.