Abstract

Motors proteins of the conserved kinesin-14 family have important roles in mitotic spindle organization and chromosome segregation. Previous studies have indicated that kinesin-14 motors are non-processive enzymes, working in the context of multi-motor ensembles that collectively organize microtubule networks. Here we show that the yeast kinesin-14 Kar3 generates processive movement as a heterodimer with the non-motor proteins Cik1 or Vik1. By analyzing the single-molecule properties of engineered motors we demonstrate that the non-catalytic domain has a key role in the motility mechanism by acting as a 'foothold' that allows Kar3 to bias translocation towards the minus end. This mechanism rivals the speed and run length of conventional motors, can support transport of the Ndc80 complex in vitro and is critical for Kar3 function in vivo. Our findings provide an example for a non-conventional translocation mechanism and can explain how Kar3 substitutes for key functions of Dynein in the yeast nucleus.

Article and author information

Author details

  1. Christine Mieck

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxim I Molodtsov

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Katarzyna Drzewicka

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Babet van der Vaart

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriele Litos

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Gerald Schmauss

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Alipasha Vaziri

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Westermann

    Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    westermann@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen C Harrison, Howard Hughes Medical Institute, Harvard Medical School, United States

Version history

  1. Received: August 23, 2014
  2. Accepted: January 26, 2015
  3. Accepted Manuscript published: January 27, 2015 (version 1)
  4. Version of Record published: February 24, 2015 (version 2)

Copyright

© 2015, Mieck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,813
    views
  • 437
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine Mieck
  2. Maxim I Molodtsov
  3. Katarzyna Drzewicka
  4. Babet van der Vaart
  5. Gabriele Litos
  6. Gerald Schmauss
  7. Alipasha Vaziri
  8. Stefan Westermann
(2015)
Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3
eLife 4:e04489.
https://doi.org/10.7554/eLife.04489

Share this article

https://doi.org/10.7554/eLife.04489

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.