Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

  1. Mark McMullan
  2. Anastasia Gardiner
  3. Kate Bailey
  4. Eric Kemen
  5. Ben J Ward
  6. Volkan Cevik
  7. Alexandre Robert-Seilaniantz
  8. Torsten Schultz-Larsen
  9. Alexi Balmuth
  10. Eric Holub
  11. Cock van Oosterhout
  12. Jonathan D G Jones  Is a corresponding author
  1. The Sainsbury Laboratory, United Kingdom
  2. Max Planck Institute for Plant Breeding Research, Germany
  3. University of East Anglia, United Kingdom
  4. J.R. Simplot Company, United States
  5. University of Warwick, School of Life Sciences, United Kingdom

Abstract

How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ~1%. Despite this divergence, their genomes are mosaic-like, with ~25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin's finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment.

Article and author information

Author details

  1. Mark McMullan

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Anastasia Gardiner

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kate Bailey

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Kemen

    Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ben J Ward

    School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Volkan Cevik

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandre Robert-Seilaniantz

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Torsten Schultz-Larsen

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexi Balmuth

    J.R. Simplot Company, Boise, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Eric Holub

    Warwick Crop Centre, University of Warwick, School of Life Sciences, Warwick, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Cock van Oosterhout

    School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Jonathan D G Jones

    The Sainsbury Laboratory, Norwich, United Kingdom
    For correspondence
    jonathan.jones@sainsbury-laboratory.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, McMullan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,545
    views
  • 719
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark McMullan
  2. Anastasia Gardiner
  3. Kate Bailey
  4. Eric Kemen
  5. Ben J Ward
  6. Volkan Cevik
  7. Alexandre Robert-Seilaniantz
  8. Torsten Schultz-Larsen
  9. Alexi Balmuth
  10. Eric Holub
  11. Cock van Oosterhout
  12. Jonathan D G Jones
(2015)
Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite
eLife 4:e04550.
https://doi.org/10.7554/eLife.04550

Share this article

https://doi.org/10.7554/eLife.04550

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Arkadiy K Golov, Alexey A Gavrilov ... Sergey V Razin
    Research Article

    The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.

    1. Genetics and Genomics
    Shek Man Chim, Kristen Howell ... Regeneron Genetics Center
    Research Article

    Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.