Non-crossover gene conversions show strong GC bias and unexpected clustering in humans

  1. Amy L Williams  Is a corresponding author
  2. Giulio Genovese
  3. Thomas Dyer
  4. Nicolas Altemose
  5. Katherine Truax
  6. Goo Jun
  7. Nick Patterson
  8. Simon R Myers
  9. Joanne E Curran
  10. Ravi Duggirala
  11. John Blangero
  12. David Reich
  13. Molly Przeworski
  14. for the T2D-GENES Consortium
  1. Cornell University, United States
  2. Broad Institute of Harvard and MIT, United States
  3. Texas Biomedical Research Institute, United States
  4. Oxford University, United Kingdom
  5. University of Michigan, United States
  6. Columbia University, United States

Abstract

Although the past decade has seen tremendous progress in our understanding of fine-scale recombination, little is known about non-crossover (NCO) gene conversion. We report the first genome-wide study of NCO events in humans. Using SNP array data from 98 meioses, we identified 103 sites affected by NCO, of which 50/52 were confirmed in sequence data. Overlap with double strand break (DSB) hotspots indicates that most of the events are likely of meiotic origin. We estimate that a site is involved in a NCO at a rate of 5.9×10-6/bp/generation, consistent with sperm-typing studies, and infer that tract lengths span at least an order of magnitude. Observed NCO events show strong allelic bias at heterozygous AT/GC SNPs, with 68% (58-78%) transmitting GC alleles (P=5×10-4). Strikingly, in 4 of 15 regions with resequencing data, multiple disjoint NCO tracts cluster in close proximity (~20-30 kb), a phenomenon not previously seen in mammals.

Article and author information

Author details

  1. Amy L Williams

    Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, United States
    For correspondence
    awilliams@cornell.edu
    Competing interests
    No competing interests declared.
  2. Giulio Genovese

    Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Thomas Dyer

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  4. Nicolas Altemose

    Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Katherine Truax

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  6. Goo Jun

    Department of Biostatistics, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Nick Patterson

    Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Simon R Myers

    Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Joanne E Curran

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  10. Ravi Duggirala

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  11. John Blangero

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  12. David Reich

    Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  13. Molly Przeworski

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Molly Przeworski, Reviewing editor, eLife.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Ethics

Human subjects: Institutional review board exemption was given for this study from the Broad Institute of Harvard and MIT and the Texas Biomedical Research Institute. The analysis was entirely conducted using anonymous identifiers.

Version history

  1. Received: September 5, 2014
  2. Accepted: March 20, 2015
  3. Accepted Manuscript published: March 25, 2015 (version 1)
  4. Version of Record published: April 22, 2015 (version 2)

Copyright

© 2015, Williams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,764
    views
  • 637
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy L Williams
  2. Giulio Genovese
  3. Thomas Dyer
  4. Nicolas Altemose
  5. Katherine Truax
  6. Goo Jun
  7. Nick Patterson
  8. Simon R Myers
  9. Joanne E Curran
  10. Ravi Duggirala
  11. John Blangero
  12. David Reich
  13. Molly Przeworski
  14. for the T2D-GENES Consortium
(2015)
Non-crossover gene conversions show strong GC bias and unexpected clustering in humans
eLife 4:e04637.
https://doi.org/10.7554/eLife.04637

Share this article

https://doi.org/10.7554/eLife.04637

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.