Non-crossover gene conversions show strong GC bias and unexpected clustering in humans

  1. Amy L Williams  Is a corresponding author
  2. Giulio Genovese
  3. Thomas Dyer
  4. Nicolas Altemose
  5. Katherine Truax
  6. Goo Jun
  7. Nick Patterson
  8. Simon R Myers
  9. Joanne E Curran
  10. Ravi Duggirala
  11. John Blangero
  12. David Reich
  13. Molly Przeworski
  14. for the T2D-GENES Consortium
  1. Cornell University, United States
  2. Broad Institute of Harvard and MIT, United States
  3. Texas Biomedical Research Institute, United States
  4. Oxford University, United Kingdom
  5. University of Michigan, United States
  6. Columbia University, United States

Abstract

Although the past decade has seen tremendous progress in our understanding of fine-scale recombination, little is known about non-crossover (NCO) gene conversion. We report the first genome-wide study of NCO events in humans. Using SNP array data from 98 meioses, we identified 103 sites affected by NCO, of which 50/52 were confirmed in sequence data. Overlap with double strand break (DSB) hotspots indicates that most of the events are likely of meiotic origin. We estimate that a site is involved in a NCO at a rate of 5.9×10-6/bp/generation, consistent with sperm-typing studies, and infer that tract lengths span at least an order of magnitude. Observed NCO events show strong allelic bias at heterozygous AT/GC SNPs, with 68% (58-78%) transmitting GC alleles (P=5×10-4). Strikingly, in 4 of 15 regions with resequencing data, multiple disjoint NCO tracts cluster in close proximity (~20-30 kb), a phenomenon not previously seen in mammals.

Article and author information

Author details

  1. Amy L Williams

    Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, United States
    For correspondence
    awilliams@cornell.edu
    Competing interests
    No competing interests declared.
  2. Giulio Genovese

    Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Thomas Dyer

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  4. Nicolas Altemose

    Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Katherine Truax

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  6. Goo Jun

    Department of Biostatistics, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Nick Patterson

    Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Simon R Myers

    Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Joanne E Curran

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  10. Ravi Duggirala

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  11. John Blangero

    Department of Genetics, Texas Biomedical Research Institute, San Antonio, United States
    Competing interests
    No competing interests declared.
  12. David Reich

    Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  13. Molly Przeworski

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Molly Przeworski, Reviewing editor, eLife.

Ethics

Human subjects: Institutional review board exemption was given for this study from the Broad Institute of Harvard and MIT and the Texas Biomedical Research Institute. The analysis was entirely conducted using anonymous identifiers.

Copyright

© 2015, Williams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,781
    views
  • 639
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy L Williams
  2. Giulio Genovese
  3. Thomas Dyer
  4. Nicolas Altemose
  5. Katherine Truax
  6. Goo Jun
  7. Nick Patterson
  8. Simon R Myers
  9. Joanne E Curran
  10. Ravi Duggirala
  11. John Blangero
  12. David Reich
  13. Molly Przeworski
  14. for the T2D-GENES Consortium
(2015)
Non-crossover gene conversions show strong GC bias and unexpected clustering in humans
eLife 4:e04637.
https://doi.org/10.7554/eLife.04637

Share this article

https://doi.org/10.7554/eLife.04637

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.