High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force generation

  1. Zhiguo Shang
  2. Kaifeng Zhou
  3. Chen Xu
  4. Roseann Csencsits
  5. Jared C Cochran
  6. Charles V Sindelar  Is a corresponding author
  1. Brandeis University, United States
  2. Yale University, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Indiana University, United States

Abstract

Microtubule-based transport by the kinesin motors, powered by ATP hydrolysis, is essential for a wide range of vital processes in eukaryotes. We obtained insight into this process by developing atomic models for no-nucleotide and ATP states of the monomeric kinesin motor domain on microtubules from cryo-EM reconstructions at 5-6Å resolution. By comparing these models with existing X-ray structures of ADP-bound kinesin, we infer a mechanistic scheme in which microtubule attachment, mediated by a universally conserved 'linchpin' residue in kinesin (N255), triggers a clamshell opening of the nucleotide cleft and accompanying release of ADP. Binding of ATP re-closes the cleft in a manner that tightly couples to translocation of cargo, via kinesin's 'neck linker' element. These structural transitions are reminiscent of the analogous nucleotide-exchange steps in the myosin and F1-ATPase motors, and inform how the two heads of a kinesin dimer 'gate' each other to promote coordinated stepping along microtubules.

Article and author information

Author details

  1. Zhiguo Shang

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaifeng Zhou

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chen Xu

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roseann Csencsits

    Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jared C Cochran

    Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles V Sindelar

    Yale University, New Haven, United States
    For correspondence
    charles.sindelar@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anthony A Hyman, Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Version history

  1. Received: September 12, 2014
  2. Accepted: November 20, 2014
  3. Accepted Manuscript published: November 21, 2014 (version 1)
  4. Accepted Manuscript updated: November 28, 2014 (version 2)
  5. Version of Record published: December 24, 2014 (version 3)

Copyright

© 2014, Shang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,494
    views
  • 754
    downloads
  • 133
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiguo Shang
  2. Kaifeng Zhou
  3. Chen Xu
  4. Roseann Csencsits
  5. Jared C Cochran
  6. Charles V Sindelar
(2014)
High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force generation
eLife 3:e04686.
https://doi.org/10.7554/eLife.04686

Share this article

https://doi.org/10.7554/eLife.04686

Further reading

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.