Abstract

We asked how a new, complex trait evolves by selecting for diurnal oscillations in the budding yeast, Saccharomyces cerevisiae. We expressed yellow fluorescent protein (YFP) from a yeast promoter and selected for a regular alternation between low and high fluorescence over 24-hour period. This selection produced changes in cell adhesion rather than YFP expression: clonal populations oscillated between single cells and multicellular clumps. The oscillations are not a response to environmental cues and continue for at least three cycles in a constant environment. We identified eight putative causative mutations in one clone and recreated the evolved phenotype in the ancestral strain. The mutated genes lack obvious relationships to each other, but multiple lineages change from the haploid to the diploid pattern of gene expression. We show that a novel, complex phenotype can evolve by small sets of mutations in genes whose molecular functions appear to be unrelated to each other.

Article and author information

Author details

  1. Gregg A Wildenberg

    Harvard University, Cambridge, United States
    For correspondence
    greggwildenberg@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew W Murray

    Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael Laub, Massachusetts Institute of Technology, United States

Version history

  1. Received: September 23, 2014
  2. Accepted: November 7, 2014
  3. Accepted Manuscript published: November 10, 2014 (version 1)
  4. Version of Record published: December 10, 2014 (version 2)

Copyright

© 2014, Wildenberg & Murray

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,823
    Page views
  • 351
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gregg A Wildenberg
  2. Andrew W Murray
(2014)
Evolving a 24-hour oscillator in budding yeast
eLife 3:e04875.
https://doi.org/10.7554/eLife.04875

Further reading

    1. Ecology
    2. Evolutionary Biology
    Hannah J Williams, Vivek H Sridhar ... Amanda D Melin
    Review Article

    Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a ‘sensory collective’; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify ‘sensescapes’. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.