The contrasting phylodynamics of human influenza B viruses

  1. Dhanasekaran Vijaykrishna  Is a corresponding author
  2. Edward C Holmes
  3. Udayan Joseph
  4. Mathieu Fourment
  5. Yvonne C F Su
  6. Rebecca Halpin
  7. Raphael T C Lee
  8. Yi-Mo Deng
  9. Vithiagaran Gunalan
  10. Xudong Lin
  11. Timothy B Stockwell
  12. Nadia B Fedorova
  13. Bin Zhou
  14. Natalie Spirason
  15. Denise Kühnert
  16. Veronika Boskova
  17. Tanja Stadler
  18. Anna-Maria Costa
  19. Dominic E Dwyer
  20. Q Sue Huang
  21. Lance C Jennings
  22. William Rawlinson
  23. Sheena G Sullivan
  24. Aeron C Hurt
  25. Sebastian Maurer-Stroh
  26. David E Wentworth
  27. Gavin J D Smith
  28. Ian Barr
  1. Duke-NUS Graduate Medical School, Singapore
  2. University of Sydney, Australia
  3. J Craig Venter Institute, United States
  4. Agency for Science, Technology and Research, Singapore
  5. Peter Doherty Institute for Infection and Immunity, Australia
  6. Eidgenössische Technische Hochschule Zürich, Switzerland
  7. Royal Children's Hospital, Australia
  8. Westmead Hospital, Australia
  9. National Centre for Biosecurity and Infectious Disease, New Zealand
  10. Canterbury Health Laboratories, New Zealand
  11. Prince of Wales Hospital, Australia
  12. Peter Doherty Institute for Infection and Immunity, United States

Abstract

A complex interplay of viral, host and ecological factors shape the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

Article and author information

Author details

  1. Dhanasekaran Vijaykrishna

    Duke-NUS Graduate Medical School, Singapore, Singapore
    For correspondence
    vijay.dhanasekaran@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Edward C Holmes

    Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Udayan Joseph

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathieu Fourment

    Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne C F Su

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca Halpin

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Raphael T C Lee

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi-Mo Deng

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Vithiagaran Gunalan

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Xudong Lin

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Timothy B Stockwell

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nadia B Fedorova

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Bin Zhou

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Natalie Spirason

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Denise Kühnert

    Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Veronika Boskova

    Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Tanja Stadler

    Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  18. Anna-Maria Costa

    Royal Children's Hospital, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Dominic E Dwyer

    Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
  20. Q Sue Huang

    Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  21. Lance C Jennings

    Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  22. William Rawlinson

    Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Sheena G Sullivan

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  24. Aeron C Hurt

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  25. Sebastian Maurer-Stroh

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  26. David E Wentworth

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Gavin J D Smith

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  28. Ian Barr

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Vijaykrishna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,072
    views
  • 1,031
    downloads
  • 176
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dhanasekaran Vijaykrishna
  2. Edward C Holmes
  3. Udayan Joseph
  4. Mathieu Fourment
  5. Yvonne C F Su
  6. Rebecca Halpin
  7. Raphael T C Lee
  8. Yi-Mo Deng
  9. Vithiagaran Gunalan
  10. Xudong Lin
  11. Timothy B Stockwell
  12. Nadia B Fedorova
  13. Bin Zhou
  14. Natalie Spirason
  15. Denise Kühnert
  16. Veronika Boskova
  17. Tanja Stadler
  18. Anna-Maria Costa
  19. Dominic E Dwyer
  20. Q Sue Huang
  21. Lance C Jennings
  22. William Rawlinson
  23. Sheena G Sullivan
  24. Aeron C Hurt
  25. Sebastian Maurer-Stroh
  26. David E Wentworth
  27. Gavin J D Smith
  28. Ian Barr
(2015)
The contrasting phylodynamics of human influenza B viruses
eLife 4:e05055.
https://doi.org/10.7554/eLife.05055

Share this article

https://doi.org/10.7554/eLife.05055

Further reading

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.