The contrasting phylodynamics of human influenza B viruses

  1. Dhanasekaran Vijaykrishna  Is a corresponding author
  2. Edward C Holmes
  3. Udayan Joseph
  4. Mathieu Fourment
  5. Yvonne C F Su
  6. Rebecca Halpin
  7. Raphael T C Lee
  8. Yi-Mo Deng
  9. Vithiagaran Gunalan
  10. Xudong Lin
  11. Timothy B Stockwell
  12. Nadia B Fedorova
  13. Bin Zhou
  14. Natalie Spirason
  15. Denise Kühnert
  16. Veronika Boskova
  17. Tanja Stadler
  18. Anna-Maria Costa
  19. Dominic E Dwyer
  20. Q Sue Huang
  21. Lance C Jennings
  22. William Rawlinson
  23. Sheena G Sullivan
  24. Aeron C Hurt
  25. Sebastian Maurer-Stroh
  26. David E Wentworth
  27. Gavin J D Smith
  28. Ian Barr
  1. Duke-NUS Graduate Medical School, Singapore
  2. University of Sydney, Australia
  3. J Craig Venter Institute, United States
  4. Agency for Science, Technology and Research, Singapore
  5. Peter Doherty Institute for Infection and Immunity, Australia
  6. Eidgenössische Technische Hochschule Zürich, Switzerland
  7. Royal Children's Hospital, Australia
  8. Westmead Hospital, Australia
  9. National Centre for Biosecurity and Infectious Disease, New Zealand
  10. Canterbury Health Laboratories, New Zealand
  11. Prince of Wales Hospital, Australia
  12. Peter Doherty Institute for Infection and Immunity, United States

Abstract

A complex interplay of viral, host and ecological factors shape the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

Article and author information

Author details

  1. Dhanasekaran Vijaykrishna

    Duke-NUS Graduate Medical School, Singapore, Singapore
    For correspondence
    vijay.dhanasekaran@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Edward C Holmes

    Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Udayan Joseph

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathieu Fourment

    Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne C F Su

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca Halpin

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Raphael T C Lee

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi-Mo Deng

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Vithiagaran Gunalan

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Xudong Lin

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Timothy B Stockwell

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nadia B Fedorova

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Bin Zhou

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Natalie Spirason

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Denise Kühnert

    Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Veronika Boskova

    Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Tanja Stadler

    Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  18. Anna-Maria Costa

    Royal Children's Hospital, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Dominic E Dwyer

    Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
  20. Q Sue Huang

    Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  21. Lance C Jennings

    Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  22. William Rawlinson

    Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Sheena G Sullivan

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  24. Aeron C Hurt

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  25. Sebastian Maurer-Stroh

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  26. David E Wentworth

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Gavin J D Smith

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  28. Ian Barr

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard A Neher, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: October 6, 2014
  2. Accepted: January 15, 2015
  3. Accepted Manuscript published: January 16, 2015 (version 1)
  4. Version of Record published: February 11, 2015 (version 2)

Copyright

© 2015, Vijaykrishna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,011
    Page views
  • 1,002
    Downloads
  • 141
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dhanasekaran Vijaykrishna
  2. Edward C Holmes
  3. Udayan Joseph
  4. Mathieu Fourment
  5. Yvonne C F Su
  6. Rebecca Halpin
  7. Raphael T C Lee
  8. Yi-Mo Deng
  9. Vithiagaran Gunalan
  10. Xudong Lin
  11. Timothy B Stockwell
  12. Nadia B Fedorova
  13. Bin Zhou
  14. Natalie Spirason
  15. Denise Kühnert
  16. Veronika Boskova
  17. Tanja Stadler
  18. Anna-Maria Costa
  19. Dominic E Dwyer
  20. Q Sue Huang
  21. Lance C Jennings
  22. William Rawlinson
  23. Sheena G Sullivan
  24. Aeron C Hurt
  25. Sebastian Maurer-Stroh
  26. David E Wentworth
  27. Gavin J D Smith
  28. Ian Barr
(2015)
The contrasting phylodynamics of human influenza B viruses
eLife 4:e05055.
https://doi.org/10.7554/eLife.05055

Share this article

https://doi.org/10.7554/eLife.05055

Further reading

    1. Evolutionary Biology
    Zhiliang Zhang, Zhifei Zhang ... Guoxiang Li
    Research Article

    Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.

    1. Developmental Biology
    2. Evolutionary Biology
    Eman Hijaze, Tsvia Gildor ... Smadar Ben-Tabou de-Leon
    Research Article

    Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates’ biomineralizing cells, yet, little is known on ROCK’s role in invertebrates’ biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.