The contrasting phylodynamics of human influenza B viruses

  1. Dhanasekaran Vijaykrishna  Is a corresponding author
  2. Edward C Holmes
  3. Udayan Joseph
  4. Mathieu Fourment
  5. Yvonne C F Su
  6. Rebecca Halpin
  7. Raphael T C Lee
  8. Yi-Mo Deng
  9. Vithiagaran Gunalan
  10. Xudong Lin
  11. Timothy B Stockwell
  12. Nadia B Fedorova
  13. Bin Zhou
  14. Natalie Spirason
  15. Denise Kühnert
  16. Veronika Boskova
  17. Tanja Stadler
  18. Anna-Maria Costa
  19. Dominic E Dwyer
  20. Q Sue Huang
  21. Lance C Jennings
  22. William Rawlinson
  23. Sheena G Sullivan
  24. Aeron C Hurt
  25. Sebastian Maurer-Stroh
  26. David E Wentworth
  27. Gavin J D Smith
  28. Ian Barr
  1. Duke-NUS Graduate Medical School, Singapore
  2. University of Sydney, Australia
  3. J Craig Venter Institute, United States
  4. Agency for Science, Technology and Research, Singapore
  5. Peter Doherty Institute for Infection and Immunity, Australia
  6. Eidgenössische Technische Hochschule Zürich, Switzerland
  7. Royal Children's Hospital, Australia
  8. Westmead Hospital, Australia
  9. National Centre for Biosecurity and Infectious Disease, New Zealand
  10. Canterbury Health Laboratories, New Zealand
  11. Prince of Wales Hospital, Australia
  12. Peter Doherty Institute for Infection and Immunity, United States

Abstract

A complex interplay of viral, host and ecological factors shape the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

Article and author information

Author details

  1. Dhanasekaran Vijaykrishna

    Duke-NUS Graduate Medical School, Singapore, Singapore
    For correspondence
    vijay.dhanasekaran@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Edward C Holmes

    Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Udayan Joseph

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathieu Fourment

    Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne C F Su

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca Halpin

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Raphael T C Lee

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi-Mo Deng

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Vithiagaran Gunalan

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Xudong Lin

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Timothy B Stockwell

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nadia B Fedorova

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Bin Zhou

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Natalie Spirason

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Denise Kühnert

    Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Veronika Boskova

    Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Tanja Stadler

    Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  18. Anna-Maria Costa

    Royal Children's Hospital, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  19. Dominic E Dwyer

    Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
  20. Q Sue Huang

    Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  21. Lance C Jennings

    Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  22. William Rawlinson

    Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Sheena G Sullivan

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  24. Aeron C Hurt

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  25. Sebastian Maurer-Stroh

    Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  26. David E Wentworth

    J Craig Venter Institute, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Gavin J D Smith

    Duke-NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  28. Ian Barr

    World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Vijaykrishna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,100
    views
  • 1,045
    downloads
  • 179
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dhanasekaran Vijaykrishna
  2. Edward C Holmes
  3. Udayan Joseph
  4. Mathieu Fourment
  5. Yvonne C F Su
  6. Rebecca Halpin
  7. Raphael T C Lee
  8. Yi-Mo Deng
  9. Vithiagaran Gunalan
  10. Xudong Lin
  11. Timothy B Stockwell
  12. Nadia B Fedorova
  13. Bin Zhou
  14. Natalie Spirason
  15. Denise Kühnert
  16. Veronika Boskova
  17. Tanja Stadler
  18. Anna-Maria Costa
  19. Dominic E Dwyer
  20. Q Sue Huang
  21. Lance C Jennings
  22. William Rawlinson
  23. Sheena G Sullivan
  24. Aeron C Hurt
  25. Sebastian Maurer-Stroh
  26. David E Wentworth
  27. Gavin J D Smith
  28. Ian Barr
(2015)
The contrasting phylodynamics of human influenza B viruses
eLife 4:e05055.
https://doi.org/10.7554/eLife.05055

Share this article

https://doi.org/10.7554/eLife.05055

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.