Chromosome mis-segregation and cytokinesis failure in trisomic human cells

  1. Joshua M Nicholson
  2. Joana C Macedo
  3. Aaron J Mattingly
  4. Darawalee Wangsa
  5. Jordi Camps
  6. Vera Lima
  7. Ana M Gomes
  8. Sofia Dória
  9. Thomas Ried
  10. Elsa Logarinho
  11. Daniela Cimini  Is a corresponding author
  1. Virginia Tech, United States
  2. Universidade do Porto, Portugal
  3. University of California, San Francisco, United States
  4. National Institutes of Health, United States
  5. Institut D'Investigacions Biomèdiques August Pi i Sunyer, Spain

Abstract

Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n=46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is both required and sufficient for the cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome.

Article and author information

Author details

  1. Joshua M Nicholson

    Department of Biological Sciences, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joana C Macedo

    Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Aaron J Mattingly

    Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Darawalee Wangsa

    Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jordi Camps

    Gastrointestinal and Pancreatic Oncology Group, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Vera Lima

    Department of Genetics, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Ana M Gomes

    Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Sofia Dória

    Department of Genetics, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas Ried

    Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Elsa Logarinho

    Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniela Cimini

    Department of Biological Sciences, Virginia Tech, Blacksburg, United States
    For correspondence
    cimini@vt.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The study acknowledged the ethics guidelines under national rules and accordingly to the principles of the Declaration of Helsinki, and was approved by the Ethics Committee of Hospital de S. Jo�o-Porto (dispatch 14 Nov 2012) (approval number 237/2012). Informed consent forms with detailed information were provided to all patients. The study did not imply collection of extra material from the healthy donor females (only surplus cells/tissues were used); the study didn't bring any direct benefits to the volunteers; there were no risks or costs for the volunteers; there was no access to patient clinical data (samples were obtained in anonymous form from the Hospital Genetics Department); participation was volunteer and free to be interrupted at any moment; there are no ethical impacts predicted; there will be no commercial interests.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 14,765
    views
  • 1,212
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua M Nicholson
  2. Joana C Macedo
  3. Aaron J Mattingly
  4. Darawalee Wangsa
  5. Jordi Camps
  6. Vera Lima
  7. Ana M Gomes
  8. Sofia Dória
  9. Thomas Ried
  10. Elsa Logarinho
  11. Daniela Cimini
(2015)
Chromosome mis-segregation and cytokinesis failure in trisomic human cells
eLife 4:e05068.
https://doi.org/10.7554/eLife.05068

Share this article

https://doi.org/10.7554/eLife.05068

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.