A highly-tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal

  1. Ian D Blum
  2. Lei Zhu
  3. Luc Moquin
  4. Maia V Kokoeva
  5. Alain Gratton
  6. Bruno Giros
  7. Kai-Florian Storch  Is a corresponding author
  1. McGill University, Canada
  2. Douglas Mental Health University Institute, Canada

Abstract

Ultradian (~4 h) rhythms in locomotor activity that do not depend on the master circadian pacemaker in the suprachiasmatic nucleus have been observed across mammalian species, however, the underlying mechanisms driving these rhythms are unknown. We show that disruption of the dopamine transporter gene lengthens the period of ultradian locomotor rhythms in mice. Period lengthening also results from chemogenetic activation of midbrain dopamine neurons and psychostimulant treatment, while the antipsychotic haloperidol has the opposite effect. We further reveal that striatal dopamine levels fluctuate in synchrony with ultradian activity cycles and that dopaminergic tone strongly predicts ultradian period. Our data indicate that an arousal regulating, dopaminergic ultradian oscillator (DUO) operates in the mammalian brain, which normally cycles in harmony with the circadian clock, but can desynchronize when dopamine tone is elevated, thereby producing aberrant patterns of arousal which are strikingly similar to perturbed sleep-wake cycles comorbid with psychopathology.

Article and author information

Author details

  1. Ian D Blum

    Department of Psychiatry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Lei Zhu

    Department of Psychiatry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Luc Moquin

    Douglas Mental Health University Institute, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Maia V Kokoeva

    Department of Medicine, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain Gratton

    Department of Psychiatry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruno Giros

    Department of Psychiatry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Kai-Florian Storch

    Department of Psychiatry, McGill University, Montreal, Canada
    For correspondence
    florian.storch@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: All experimental procedures were performed in accordance with the Canadian Council on Animal Care guidelines and approved by the McGill University Animal Care Committee (animal use protocol #2010-5945).

Version history

  1. Received: October 10, 2014
  2. Accepted: December 28, 2014
  3. Accepted Manuscript published: December 29, 2014 (version 1)
  4. Version of Record published: February 12, 2015 (version 2)

Copyright

© 2014, Blum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,183
    views
  • 1,089
    downloads
  • 121
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian D Blum
  2. Lei Zhu
  3. Luc Moquin
  4. Maia V Kokoeva
  5. Alain Gratton
  6. Bruno Giros
  7. Kai-Florian Storch
(2014)
A highly-tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal
eLife 3:e05105.
https://doi.org/10.7554/eLife.05105

Share this article

https://doi.org/10.7554/eLife.05105

Further reading

  1. Dopamine drives an "ultradian" clock with a period of around four hours in mice.

    1. Neuroscience
    Ece Kaya, Sonja A Kotz, Molly J Henry
    Research Article

    Dynamic attending theory proposes that the ability to track temporal cues in the auditory environment is governed by entrainment, the synchronization between internal oscillations and regularities in external auditory signals. Here, we focused on two key properties of internal oscillators: their preferred rate, the default rate in the absence of any input; and their flexibility, how they adapt to changes in rhythmic context. We developed methods to estimate oscillator properties (Experiment 1) and compared the estimates across tasks and individuals (Experiment 2). Preferred rates, estimated as the stimulus rates with peak performance, showed a harmonic relationship across measurements and were correlated with individuals’ spontaneous motor tempo. Estimates from motor tasks were slower than those from the perceptual task, and the degree of slowing was consistent for each individual. Task performance decreased with trial-to-trial changes in stimulus rate, and responses on individual trials were biased toward the preceding trial’s stimulus properties. Flexibility, quantified as an individual’s ability to adapt to faster-than-previous rates, decreased with age. These findings show domain-specific rate preferences for the assumed oscillatory system underlying rhythm perception and production, and that this system loses its ability to flexibly adapt to changes in the external rhythmic context during aging.