1. Ecology
  2. Genetics and Genomics
Download icon

Social networks predict gut microbiome composition in wild baboons

  1. Jenny Tung
  2. Luis B Barreiro
  3. Michael B Burns
  4. Jean-Christophe Grenier
  5. Josh Lynch
  6. Laura E Grieneisen
  7. Jeanne Altmann
  8. Susan C Alberts
  9. Ran Blekhman
  10. Elizabeth A Archie  Is a corresponding author
  1. Duke University, United States
  2. University of Montreal, Canada
  3. University of Minnesota, United States
  4. University of Notre Dame, United States
  5. National Museums of Kenya, Kenya
Research Article
  • Cited 212
  • Views 10,435
  • Annotations
Cite this article as: eLife 2015;4:e05224 doi: 10.7554/eLife.05224

Abstract

Social relationships have profound effects on health in humans and other primates, but the mechanisms that explain this relationship are not well understood. Using shotgun metagenomic data from wild baboons, we found that social group membership and social network relationships predicted both the taxonomic structure of the gut microbiome and the structure of genes encoded by gut microbial species. Rates of interaction directly explained variation in the gut microbiome, even after controlling for diet, kinship, and shared environments. They therefore strongly implicate direct physical contact among social partners in the transmission of gut microbial species. We identified 51 socially structured taxa, which were significantly enriched for anaerobic and non-spore-forming lifestyles. Our results argue that social interactions are an important determinant of gut microbiome composition in natural animal populations-a relationship with important ramifications for understanding how social relationships influence health, as well as the evolution of group living.

Article and author information

Author details

  1. Jenny Tung

    Department of Evolutionary Anthropology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis B Barreiro

    Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael B Burns

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Christophe Grenier

    Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Josh Lynch

    Department of Genetics, Cell Biology, and Development; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura E Grieneisen

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeanne Altmann

    Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  8. Susan C Alberts

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ran Blekhman

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Elizabeth A Archie

    Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
    For correspondence
    earchie@nd.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Eric Alm, MIT, United States

Publication history

  1. Received: October 17, 2014
  2. Accepted: February 27, 2015
  3. Accepted Manuscript published: March 16, 2015 (version 1)
  4. Version of Record published: March 31, 2015 (version 2)

Copyright

© 2015, Tung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,435
    Page views
  • 1,843
    Downloads
  • 212
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Morgan P Kain et al.
    Research Article Updated

    Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species’ physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species’ contributions to transmission and has has direct application to other zoonotic pathogens.

    1. Ecology
    Brendan Cornwell et al.
    Short Report Updated

    Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here, we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching-resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching-resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resistant corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.