Social networks predict gut microbiome composition in wild baboons

  1. Jenny Tung
  2. Luis B Barreiro
  3. Michael B Burns
  4. Jean-Christophe Grenier
  5. Josh Lynch
  6. Laura E Grieneisen
  7. Jeanne Altmann
  8. Susan C Alberts
  9. Ran Blekhman
  10. Elizabeth A Archie  Is a corresponding author
  1. Duke University, United States
  2. University of Montreal, Canada
  3. University of Minnesota, United States
  4. University of Notre Dame, United States
  5. National Museums of Kenya, Kenya

Abstract

Social relationships have profound effects on health in humans and other primates, but the mechanisms that explain this relationship are not well understood. Using shotgun metagenomic data from wild baboons, we found that social group membership and social network relationships predicted both the taxonomic structure of the gut microbiome and the structure of genes encoded by gut microbial species. Rates of interaction directly explained variation in the gut microbiome, even after controlling for diet, kinship, and shared environments. They therefore strongly implicate direct physical contact among social partners in the transmission of gut microbial species. We identified 51 socially structured taxa, which were significantly enriched for anaerobic and non-spore-forming lifestyles. Our results argue that social interactions are an important determinant of gut microbiome composition in natural animal populations-a relationship with important ramifications for understanding how social relationships influence health, as well as the evolution of group living.

Article and author information

Author details

  1. Jenny Tung

    Department of Evolutionary Anthropology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis B Barreiro

    Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael B Burns

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Christophe Grenier

    Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Josh Lynch

    Department of Genetics, Cell Biology, and Development; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura E Grieneisen

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeanne Altmann

    Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  8. Susan C Alberts

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ran Blekhman

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Elizabeth A Archie

    Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
    For correspondence
    earchie@nd.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Tung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenny Tung
  2. Luis B Barreiro
  3. Michael B Burns
  4. Jean-Christophe Grenier
  5. Josh Lynch
  6. Laura E Grieneisen
  7. Jeanne Altmann
  8. Susan C Alberts
  9. Ran Blekhman
  10. Elizabeth A Archie
(2015)
Social networks predict gut microbiome composition in wild baboons
eLife 4:e05224.
https://doi.org/10.7554/eLife.05224

Share this article

https://doi.org/10.7554/eLife.05224

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.