Social networks predict gut microbiome composition in wild baboons

  1. Jenny Tung
  2. Luis B Barreiro
  3. Michael B Burns
  4. Jean-Christophe Grenier
  5. Josh Lynch
  6. Laura E Grieneisen
  7. Jeanne Altmann
  8. Susan C Alberts
  9. Ran Blekhman
  10. Elizabeth A Archie  Is a corresponding author
  1. Duke University, United States
  2. University of Montreal, Canada
  3. University of Minnesota, United States
  4. University of Notre Dame, United States
  5. National Museums of Kenya, Kenya

Abstract

Social relationships have profound effects on health in humans and other primates, but the mechanisms that explain this relationship are not well understood. Using shotgun metagenomic data from wild baboons, we found that social group membership and social network relationships predicted both the taxonomic structure of the gut microbiome and the structure of genes encoded by gut microbial species. Rates of interaction directly explained variation in the gut microbiome, even after controlling for diet, kinship, and shared environments. They therefore strongly implicate direct physical contact among social partners in the transmission of gut microbial species. We identified 51 socially structured taxa, which were significantly enriched for anaerobic and non-spore-forming lifestyles. Our results argue that social interactions are an important determinant of gut microbiome composition in natural animal populations-a relationship with important ramifications for understanding how social relationships influence health, as well as the evolution of group living.

Article and author information

Author details

  1. Jenny Tung

    Department of Evolutionary Anthropology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luis B Barreiro

    Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael B Burns

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Christophe Grenier

    Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Josh Lynch

    Department of Genetics, Cell Biology, and Development; Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura E Grieneisen

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeanne Altmann

    Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  8. Susan C Alberts

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ran Blekhman

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Elizabeth A Archie

    Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
    For correspondence
    earchie@nd.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Tung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,264
    views
  • 2,111
    downloads
  • 362
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenny Tung
  2. Luis B Barreiro
  3. Michael B Burns
  4. Jean-Christophe Grenier
  5. Josh Lynch
  6. Laura E Grieneisen
  7. Jeanne Altmann
  8. Susan C Alberts
  9. Ran Blekhman
  10. Elizabeth A Archie
(2015)
Social networks predict gut microbiome composition in wild baboons
eLife 4:e05224.
https://doi.org/10.7554/eLife.05224

Share this article

https://doi.org/10.7554/eLife.05224

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Lenore Pipes, Rasmus Nielsen
    Tools and Resources

    Environmental DNA (eDNA) is becoming an increasingly important tool in diverse scientific fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic groups. It has long been known that full probabilistic methods for phylogenetic assignment are preferable, but unfortunately, such methods are computationally intensive and are typically inapplicable to modern Next-Generation Sequencing data. We here present a fast approximate likelihood method for phylogenetic assignment of DNA sequences. Applying the new method to several mock communities and simulated datasets, we show that it identifies more reads at both high and low taxonomic levels more accurately than other leading methods. The advantage of the method is particularly apparent in the presence of polymorphisms and/or sequencing errors and when the true species is not represented in the reference database.

    1. Ecology
    Hao Wang, Kai He ... Chaolun Li
    Research Article

    Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host–symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill’s structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host–symbiont interaction and the bivalves' environmental adaption mechanisms.