A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA

  1. Natasha M O'Brown
  2. Brian R Summers
  3. Felicity C Jones
  4. Shannon D Brady
  5. David M Kingsley  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. General Practice Dentistry, United States
  3. Max Planck Institute for Developmental Biology, Germany
  4. Howard Hughes Medical Institute, Stanford University School of Medicine, United States

Abstract

Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spines. An identical T->G base pair change is found in EDA enhancers of divergent low-plated fish. Recreation of the T->G change in a marine enhancer strongly reduces expression in posterior armor plates. Bead implantation and cell culture experiments show that Wnt signaling strongly activates the marine EDA enhancer, and the freshwater T->G change reduces Wnt responsiveness. Thus parallel evolution of low-plated sticklebacks has occurred through a shared DNA regulatory change, which reduces the sensitivity of an EDA enhancer to Wnt signaling, and alters expression in developing armor plates while preserving expression in other tissues.

Article and author information

Author details

  1. Natasha M O'Brown

    Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brian R Summers

    General Practice Dentistry, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Felicity C Jones

    Friedrich Miescher Laboratory, Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Shannon D Brady

    Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David M Kingsley

    Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    For correspondence
    kingsley@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13834) of Stanford University, in animal facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Publication history

  1. Received: October 23, 2014
  2. Accepted: January 26, 2015
  3. Accepted Manuscript published: January 28, 2015 (version 1)
  4. Version of Record published: February 17, 2015 (version 2)

Copyright

© 2015, O'Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,885
    Page views
  • 620
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natasha M O'Brown
  2. Brian R Summers
  3. Felicity C Jones
  4. Shannon D Brady
  5. David M Kingsley
(2015)
A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA
eLife 4:e05290.
https://doi.org/10.7554/eLife.05290

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Bradley M Colquitt, Kelly Li ... Michael S Brainard
    Research Article

    Sensory feedback is required for the stable execution of learned motor skills, and its loss can severely disrupt motor performance. The neural mechanisms that mediate sensorimotor stability have been extensively studied at systems and physiological levels, yet relatively little is known about how disruptions to sensory input alter the molecular properties of associated motor systems. Songbird courtship song, a model for skilled behavior, is a learned and highly structured vocalization that is destabilized following deafening. Here, we sought to determine how the loss of auditory feedback modifies gene expression and its coordination across the birdsong sensorimotor circuit. To facilitate this system-wide analysis of transcriptional responses, we developed a gene expression profiling approach that enables the construction of hundreds of spatially-defined RNA-sequencing libraries. Using this method, we found that deafening preferentially alters gene expression across birdsong neural circuitry relative to surrounding areas, particularly in premotor and striatal regions. Genes with altered expression are associated with synaptic transmission, neuronal spines, and neuromodulation and show a bias toward expression in glutamatergic neurons and Pvalb/Sst-class GABAergic interneurons. We also found that connected song regions exhibit correlations in gene expression that were reduced in deafened birds relative to hearing birds, suggesting that song destabilization alters the inter-region coordination of transcriptional states. Finally, lesioning LMAN, a forebrain afferent of RA required for deafening-induced song plasticity, had the largest effect on groups of genes that were also most affected by deafening. Combined, this integrated transcriptomics analysis demonstrates that the loss of peripheral sensory input drives a distributed gene expression response throughout associated sensorimotor neural circuitry and identifies specific candidate molecular and cellular mechanisms that support the stability and plasticity of learned motor skills.

    1. Chromosomes and Gene Expression
    Sarah E London
    Insight

    In songbirds, deafening leads to changes in gene expression which have now been mapped at the single-cell level across the neural circuit involved in song production.