Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

  1. Paul Chappell
  2. El Kahina Meziane
  3. Michael Harrison
  4. Łukasz Magiera
  5. Clemens Hermann
  6. Laura Mears
  7. Antony G Wrobel
  8. Charlotte Durant
  9. Lise Lotte Nielsen
  10. Soren Buus
  11. Nicola Ternette
  12. William Mwangi
  13. Colin Butter
  14. Venugopal Nair
  15. Trudy Ahyee
  16. Richard Duggleby
  17. Alejandro Madrigal
  18. Pietro Roversi
  19. Susan M Lea
  20. Jim Kaufman  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Cambridge, United Kingdom
  3. University of Copenhagen, Denmark
  4. Pirbright Institute, United Kingdom
  5. The Royal Free Hospital, United Kingdom

Abstract

Highly polymorphic MHC molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and HIV infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation.

Article and author information

Author details

  1. Paul Chappell

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. El Kahina Meziane

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Harrison

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Łukasz Magiera

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Clemens Hermann

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Mears

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Antony G Wrobel

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Durant

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Lise Lotte Nielsen

    Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Soren Buus

    Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicola Ternette

    Target Discovery Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. William Mwangi

    Pirbright Institute, Compton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Colin Butter

    Pirbright Institute, Compton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Venugopal Nair

    Pirbright Institute, Compton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Trudy Ahyee

    Anthony Nolan Research Institute, The Royal Free Hospital, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Richard Duggleby

    Anthony Nolan Research Institute, The Royal Free Hospital, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Alejandro Madrigal

    Anthony Nolan Research Institute, The Royal Free Hospital, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Pietro Roversi

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Susan M Lea

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Jim Kaufman

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    jfk31@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Ethics

Animal experimentation: All procedures involving chickens were carried out at the University of Cambridge under Home Office project license PPL 80/2420 and with ethical approval of the Local Ethical Review Committee.

Human subjects: Anthony Nolan registrants signed written consent forms, with all procedures carried out under Human Tissue Act licensing number 22513 and with approval of the local Research Ethics committee (REC).

Version history

  1. Received: October 26, 2014
  2. Accepted: April 10, 2015
  3. Accepted Manuscript published: April 10, 2015 (version 1)
  4. Version of Record published: May 6, 2015 (version 2)

Copyright

© 2015, Chappell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,420
    views
  • 934
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Chappell
  2. El Kahina Meziane
  3. Michael Harrison
  4. Łukasz Magiera
  5. Clemens Hermann
  6. Laura Mears
  7. Antony G Wrobel
  8. Charlotte Durant
  9. Lise Lotte Nielsen
  10. Soren Buus
  11. Nicola Ternette
  12. William Mwangi
  13. Colin Butter
  14. Venugopal Nair
  15. Trudy Ahyee
  16. Richard Duggleby
  17. Alejandro Madrigal
  18. Pietro Roversi
  19. Susan M Lea
  20. Jim Kaufman
(2015)
Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding
eLife 4:e05345.
https://doi.org/10.7554/eLife.05345

Share this article

https://doi.org/10.7554/eLife.05345

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

    1. Immunology and Inflammation
    Hyereen Kang, Seong Woo Choi ... Myung-Shik Lee
    Research Article

    We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ERlysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.