Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation

Abstract

The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from 8 volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the pictures, demonstrating a key role for the ATN in human memory encoding.

Article and author information

Author details

  1. Catherine M Sweeney-Reed

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    For correspondence
    catherine.sweeney-reed@med.ovgu.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Tino Zaehle

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Juergen Voges

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Friedhelm C Schmitt

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Buentjen

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Klaus Kopitzki

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christine Esslinger

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hermann Hinrichs

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Hans-Jochen Heinze

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert T Knight

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alan Richardson-Klavehn

    Department of Neurology, Otto von Guericke University, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Ethics

Human subjects: The measurements were approved by the Ethics Commission of the Medical Faculty of the Otto-von-Guericke University, Magdeburg, and all participants gave written informed consent.

Version history

  1. Received: October 27, 2014
  2. Accepted: December 22, 2014
  3. Accepted Manuscript published: December 23, 2014 (version 1)
  4. Version of Record published: January 22, 2015 (version 2)

Copyright

© 2014, Sweeney-Reed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,899
    Page views
  • 376
    Downloads
  • 58
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine M Sweeney-Reed
  2. Tino Zaehle
  3. Juergen Voges
  4. Friedhelm C Schmitt
  5. Lars Buentjen
  6. Klaus Kopitzki
  7. Christine Esslinger
  8. Hermann Hinrichs
  9. Hans-Jochen Heinze
  10. Robert T Knight
  11. Alan Richardson-Klavehn
(2014)
Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation
eLife 3:e05352.
https://doi.org/10.7554/eLife.05352

Share this article

https://doi.org/10.7554/eLife.05352

Further reading

    1. Neuroscience
    Daichi Sasaki, Ken Imai ... Ko Matsui
    Research Article

    The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel ‘shadow’ was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800