Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

  1. Monarin Uervirojnangkoorn
  2. Oliver B Zeldin
  3. Artem Y Lyubimov
  4. Johan Hattne
  5. Aaron S Brewster
  6. Nicholas K Sauter
  7. Axel T Brunger
  8. William I Weis  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. Janelia Research Campus, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Stanford University, United States

Abstract

There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

Article and author information

Author details

  1. Monarin Uervirojnangkoorn

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Oliver B Zeldin

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Artem Y Lyubimov

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Johan Hattne

    Janelia Research Campus, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Aaron S Brewster

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Nicholas K Sauter

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Axel T Brunger

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
  8. William I Weis

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    For correspondence
    bill.weis@stanford.edu
    Competing interests
    No competing interests declared.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,981
    views
  • 893
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monarin Uervirojnangkoorn
  2. Oliver B Zeldin
  3. Artem Y Lyubimov
  4. Johan Hattne
  5. Aaron S Brewster
  6. Nicholas K Sauter
  7. Axel T Brunger
  8. William I Weis
(2015)
Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals
eLife 4:e05421.
https://doi.org/10.7554/eLife.05421

Share this article

https://doi.org/10.7554/eLife.05421

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.