Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

  1. Monarin Uervirojnangkoorn
  2. Oliver B Zeldin
  3. Artem Y Lyubimov
  4. Johan Hattne
  5. Aaron S Brewster
  6. Nicholas K Sauter
  7. Axel T Brunger
  8. William I Weis  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. Janelia Research Campus, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Stanford University, United States

Abstract

There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

Article and author information

Author details

  1. Monarin Uervirojnangkoorn

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Oliver B Zeldin

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Artem Y Lyubimov

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Johan Hattne

    Janelia Research Campus, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Aaron S Brewster

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Nicholas K Sauter

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Axel T Brunger

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
  8. William I Weis

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    For correspondence
    bill.weis@stanford.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Stephen C Harrison, Harvard Medical School, Howard Hughes Medical Institute, United States

Version history

  1. Received: October 31, 2014
  2. Accepted: March 16, 2015
  3. Accepted Manuscript published: March 17, 2015 (version 1)
  4. Version of Record published: April 15, 2015 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,957
    views
  • 884
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monarin Uervirojnangkoorn
  2. Oliver B Zeldin
  3. Artem Y Lyubimov
  4. Johan Hattne
  5. Aaron S Brewster
  6. Nicholas K Sauter
  7. Axel T Brunger
  8. William I Weis
(2015)
Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals
eLife 4:e05421.
https://doi.org/10.7554/eLife.05421

Share this article

https://doi.org/10.7554/eLife.05421

Further reading

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.