COMP-1 promotes competitive advantage of nematode sperm

  1. Jody M Hansen
  2. Daniela R Chavez
  3. Gillian M Stanfield  Is a corresponding author
  1. University of Utah, United States

Abstract

Competition among sperm to fertilize oocytes is a ubiquitous feature of sexual reproduction as well as a profoundly important aspect of sexual selection. However, little is known about the cellular mechanisms sperm use to gain competitive advantage or how these mechanisms are regulated genetically. Here, we utilize a forward genetic screen in C. elegans to identify a gene, comp-1, whose function is specifically required in competitive contexts. We show that comp-1 functions in sperm to modulate their migration through and localization within the reproductive tract, thereby promoting their access to oocytes. Contrary to previously-described models, comp-1 mutant sperm show no defects in size or velocity, thereby defining a novel pathway for preferential usage. Our results indicate not only that sperm functional traits can influence the outcome of sperm competition, but also that these traits can be modulated in a context-dependent manner depending on the presence of competing sperm.

Article and author information

Author details

  1. Jody M Hansen

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniela R Chavez

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gillian M Stanfield

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    For correspondence
    gillians@genetics.utah.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Oliver Hobert, Columbia University, United States

Version history

  1. Received: October 31, 2014
  2. Accepted: March 16, 2015
  3. Accepted Manuscript published: March 19, 2015 (version 1)
  4. Version of Record published: April 17, 2015 (version 2)

Copyright

© 2015, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,697
    views
  • 352
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jody M Hansen
  2. Daniela R Chavez
  3. Gillian M Stanfield
(2015)
COMP-1 promotes competitive advantage of nematode sperm
eLife 4:e05423.
https://doi.org/10.7554/eLife.05423

Share this article

https://doi.org/10.7554/eLife.05423

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.