Rapid diversification associated with a macroevolutionary pulse of developmental plasticity

  1. Vladislav Susoy
  2. Erik J Ragsdale
  3. Natsumi Kanzaki
  4. Ralf J Sommer  Is a corresponding author
  1. Max Planck Institute for Developmental Biology, Germany
  2. Forestry and Forest Products Research Institute, Japan

Abstract

Developmental plasticity has been proposed to facilitate phenotypic diversification in plants and animals, but the macroevolutionary potential of plastic traits remains to be objectively tested. We studied the evolution of feeding structures in a group of 90 nematodes, including Caenorhabditis elegans, some species of which have evolved a mouthpart polyphenism, moveable teeth, and predatory feeding. Comparative analyses of shape and form, using geometric morphometrics, and of structural complexity revealed a rapid process of diversification associated with developmental plasticity. First, dimorphism was associated with a sharp increase in complexity and elevated evolutionary rates, represented by a radiation of feeding-forms with structural novelties. Second, the subsequent assimilation of a single phenotype coincided with a decrease in mouthpart complexity but an even stronger increase in evolutionary rates. Our results suggest that a macroevolutionary 'pulse' of plasticity promotes novelties and, even after the secondary fixation of phenotypes, permits sustained rapid exploration of morphospace.

Article and author information

Author details

  1. Vladislav Susoy

    Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Erik J Ragsdale

    Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Natsumi Kanzaki

    Forest Pathology Laboratory, Forestry and Forest Products Research Institute, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Ralf J Sommer

    Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
    For correspondence
    ralf.sommer@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Merijn R Kant, University of Amsterdam, Netherlands

Version history

  1. Received: November 3, 2014
  2. Accepted: February 3, 2015
  3. Accepted Manuscript published: February 4, 2015 (version 1)
  4. Version of Record published: March 12, 2015 (version 2)

Copyright

© 2015, Susoy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,151
    Page views
  • 735
    Downloads
  • 107
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vladislav Susoy
  2. Erik J Ragsdale
  3. Natsumi Kanzaki
  4. Ralf J Sommer
(2015)
Rapid diversification associated with a macroevolutionary pulse of developmental plasticity
eLife 4:e05463.
https://doi.org/10.7554/eLife.05463

Share this article

https://doi.org/10.7554/eLife.05463

Further reading

    1. Evolutionary Biology
    Arda Durmaz, Valeria Visconte
    Insight

    A new mathematical model that can be applied to both single-cell and bulk DNA sequencing data sheds light on the processes governing population dynamics in stem cells.

    1. Evolutionary Biology
    Jordan Little, Maria Chikina, Nathan L Clark
    Research Article

    Co-functional proteins tend to have rates of evolution that covary over time. This correlation between evolutionary rates can be measured over the branches of a phylogenetic tree through methods such as evolutionary rate covariation (ERC), and then used to construct gene networks by the identification of proteins with functional interactions. The cause of this correlation has been hypothesized to result from both compensatory coevolution at physical interfaces and nonphysical forces such as shared changes in selective pressure. This study explores whether coevolution due to compensatory mutations has a measurable effect on the ERC signal. We examined the difference in ERC signal between physically interacting protein domains within complexes compared to domains of the same proteins that do not physically interact. We found no generalizable relationship between physical interaction and high ERC, although a few complexes ranked physical interactions higher than nonphysical interactions. Therefore, we conclude that coevolution due to physical interaction is weak, but present in the signal captured by ERC, and we hypothesize that the stronger signal instead comes from selective pressures on the protein as a whole and maintenance of the general function.