Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation

  1. Christopher E Laumer  Is a corresponding author
  2. Andreas Hejnol
  3. Gonzalo Giribet
  1. Harvard University, United States
  2. University of Bergen, Norway

Abstract

Flatworms number among the most diverse invertebrate phyla, and represent the most biomedically significant branch of the major bilaterian clade Spiralia, but to date, deep evolutionary relationships within this group have been studied using only a single locus (the rRNA operon), leaving the origins of many key clades unclear. Here, using a survey of genomes and transcriptomes representing all free-living flatworm orders, we provide resolution of platyhelminth interrelationships based on hundreds of nuclear protein-coding genes, exploring phylogenetic signal through concatenation as well as recently developed consensus approaches. These analyses robustly support a modern hypothesis of flatworm phylogeny, one which emphasizes the primacy of the often-overlooked 'microturbellarian' groups in understanding the major evolutionary transitions within Platyhelminthes: perhaps most notably, we propose a novel scenario for the interrelationships between free-living and vertebrate-parasitic flatworms, providing new opportunities to shed light on the origins and biological consequences of parasitism in these iconic invertebrates.

Article and author information

Author details

  1. Christopher E Laumer

    Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    claumer@oeb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Andreas Hejnol

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Gonzalo Giribet

    Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Laumer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,502
    views
  • 1,088
    downloads
  • 152
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher E Laumer
  2. Andreas Hejnol
  3. Gonzalo Giribet
(2015)
Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation
eLife 4:e05503.
https://doi.org/10.7554/eLife.05503

Share this article

https://doi.org/10.7554/eLife.05503