Phylogeny: Unravelling a can of worms

  1. Alejandro Sánchez Alvarado  Is a corresponding author
  1. Howard Hughes Medical Institute, Stowers Institute for Medical Research, United States

The written accounts and reasoning associated with how the species we currently use for biomedical research were selected as model systems have rarely included weighty consideration of either their evolutionary or natural histories (Alfred and Baldwin, 2015). Instead, organisms such as Drosophila, Caenorhabditis elegans, zebrafish and mice were primarily chosen as model organisms for purely practical reasons. For example, many model organisms produce large numbers of offspring, have features that make them easy to examine (such as transparent embryos), or are easy to domesticate and look after in the laboratory. Paradoxically, while this approach has been remarkably successful in advancing our understanding of life, it has also made us acutely aware of how much more biology we have yet to comprehend.

Some have argued that further research into the model organisms that dominate much of biomedical research today could fill in the many gaps that exist in our understanding of life, but these organisms give a biased and ultimately poor statistical representation of the ∼30 million species of animals that populate our planet (Brusca and Brusca, 2003). Our best chances of uncovering new biology and acquiring a truly transformative understanding of life are therefore to be found in the laboratory of nature. As technology advances and allows us to examine aspects of biology that were not previously accessible to scientific interrogation, we may want to reconsider how we choose animals as new model systems. Instead of selecting them purely on the biological attributes they conveniently exaggerate for our scientific interests, we could also consider the ecological and evolutionary histories that may have helped produce such attributes.

These considerations are particularly timely in view of current efforts to develop and characterize invertebrate model systems for studying regeneration and parasitism. Now, in eLife, Christopher Laumer of Harvard University, Andreas Hejnol of the University of Bergen and Gonzalo Giribet, also from Harvard, have unravelled the phylogenetic tree of the Platyhelminthes, which are more commonly known as the flatworms (Laumer et al., 2015).

Animals possessing bilateral symmetry are presently grouped into three main branches in the metazoan tree of life. The Deuterostomes (the evolutionary lineage to which humans belong) are represented by a number of model organisms including mice, fish, sea squirts, sea urchins and, of course, humans. The second branch, the Ecdysozoa, is presently represented in biomedical research by the fruit fly Drosophila melanogaster and the roundworm nematode C. elegans. However, the third branch, the Lophotrochozoa, remains among the most undersampled and understudied collection of complex organisms on the planet. This is despite the fact that it encompasses a collection of animals with an assortment of body plans, biological attributes, and ecological adaptations that is unmatched by the other two bilaterian metazoan branches combined. Within the Lophotrochozoa, no group of animals manifests these attributes as clearly as the Platyhelminthes: the diversity of body plans, developmental plasticity and ecological adaptations displayed by these flatworms is remarkable.

Laumer, Hejnol and Giribet report on a comprehensive analysis of the evolutionary relationships among the Platyhelminthes using a survey of genomes and transcriptomes that represents all free-living (i.e., non-parasitic) flatworm orders. This work is the first of its type for the Platyhelminthes and ultimately provides a modern hypothesis that should help us to understand how this extraordinarily diverse group of animals evolved.

By comparing hundreds of nuclear protein coding genes, Laumer et al. were able to derive a phylogeny with at least two important and intriguing attributes. Firstly, key evolutionary transitions within the Platyhelminthes unexpectedly featured the involvement of ‘microturbellarian’ (microflatworm) groups (Figure 1). Secondly, a novel scenario that explains the interrelationships between free-living and parasitic flatworms provides unique opportunities for shedding light on the origins and biological consequences of the parasitic lifestyle in these animals.

The Platyhelminthes show a diverse range of body plans and developmental characteristics.

(A) Two adult Bothrioplana semperi (Bothrioplanida) swimming in different directions. Adults are approximately 1.5 mm outstretched. Collected from near Saw Mill brook, Estabrook Woods, Concord, MA. (B) Adult of an undescribed species of Polystyliphora (Proseriata), collected from the interstices of marine sand in Bocas del Toro, Panama. Scale bar unavailable. (C) Adult specimen of an undescribed blind species of Microdalyellia (Rhabdocoela), collected in fresh water from Mt. Blue Spring, Wompatuck State Park, MA. (D) Adult, undetermined species of Nannorhynchides (Rhabdocoela), collected in brackish water at low tide near Sage Lot Pond outlet, Mashpee, MA. Scale bars: 100 µm. Samples in panels A, C and D photographed by Christopher E Laumer. Sample in panel B photographed by Marco Curini-Galletti.

The Tricladida order of flatworms contains the important model system Schmidtea mediterranea, which is used to study tissue regeneration and development. An intriguing point raised by the phylogenetic tree produced by Laumer et al. is that this order may be evolutionarily equidistant to two other orders (Prolecithophora and Fecampiida). This new relationship will have to be taken into account from this point onward when considering how the regenerative properties displayed by these three groups of animals evolved.

The work of Laumer et al. makes it clear that we should embrace an approach that involves morphological studies, evolutionary developmental biology and evolutionary genomics when selecting organisms for experimental interrogation. The evidence reported for the importance of microturbellarians (Figure 1) in the evolution of Platyhelminthes may ultimately prove to be the single most important contribution of the present body of work. Microturbellarians have not captured the attention of researchers like the best-known branches of the clearly much larger and phylogenetically diverse flatworms (e.g., planarians, polyclads, and neodermatans). It is my suspicion that this paper will bring an end to their relative obscurity.

References

  1. Book
    1. Brusca RC
    2. Brusca GJ
    (2003)
    Invertebrates
    Sunderland, Mass: Sinauer Associates.

Article and author information

Author details

  1. Alejandro Sánchez Alvarado, Reviewing Editor

    Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    asa@stowers.org
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published:

Copyright

© 2015, Sánchez Alvarado

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,446
    views
  • 137
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro Sánchez Alvarado
(2015)
Phylogeny: Unravelling a can of worms
eLife 4:e07431.
https://doi.org/10.7554/eLife.07431

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.

    1. Genetics and Genomics
    Shek Man Chim, Kristen Howell ... Regeneron Genetics Center
    Research Article

    Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.