Ribosomes slide on lysine-encoding homopolymeric A stretches

  1. Kristin S Koutmou
  2. Anthony P Schuller
  3. Julie L Brunelle
  4. Aditya Radhakrishnan
  5. Sergej Djuranovic
  6. Rachel Green  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. Washington University School of Medicine, United States

Abstract

Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell free-expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.

Article and author information

Author details

  1. Kristin S Koutmou

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Anthony P Schuller

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Julie L Brunelle

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Aditya Radhakrishnan

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Sergej Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Rachel Green

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    ragreen@jhmi.edu
    Competing interests
    Rachel Green, Reviewing editor, eLife.

Copyright

© 2015, Koutmou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,351
    views
  • 929
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kristin S Koutmou
  2. Anthony P Schuller
  3. Julie L Brunelle
  4. Aditya Radhakrishnan
  5. Sergej Djuranovic
  6. Rachel Green
(2015)
Ribosomes slide on lysine-encoding homopolymeric A stretches
eLife 4:e05534.
https://doi.org/10.7554/eLife.05534

Share this article

https://doi.org/10.7554/eLife.05534