Ribosomes slide on lysine-encoding homopolymeric A stretches

  1. Kristin S Koutmou
  2. Anthony P Schuller
  3. Julie L Brunelle
  4. Aditya Radhakrishnan
  5. Sergej Djuranovic
  6. Rachel Green  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. Washington University School of Medicine, United States

Abstract

Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell free-expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.

Article and author information

Author details

  1. Kristin S Koutmou

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Anthony P Schuller

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Julie L Brunelle

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Aditya Radhakrishnan

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Sergej Djuranovic

    Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Rachel Green

    Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    ragreen@jhmi.edu
    Competing interests
    Rachel Green, Reviewing editor, eLife.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: November 9, 2014
  2. Accepted: February 18, 2015
  3. Accepted Manuscript published: February 19, 2015 (version 1)
  4. Version of Record published: March 18, 2015 (version 2)

Copyright

© 2015, Koutmou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,229
    views
  • 898
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kristin S Koutmou
  2. Anthony P Schuller
  3. Julie L Brunelle
  4. Aditya Radhakrishnan
  5. Sergej Djuranovic
  6. Rachel Green
(2015)
Ribosomes slide on lysine-encoding homopolymeric A stretches
eLife 4:e05534.
https://doi.org/10.7554/eLife.05534

Share this article

https://doi.org/10.7554/eLife.05534

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.